
1. Installing Gentoo
In this part you learn how to install Gentoo on your system.

Content:

About the Gentoo Linux Installation
Users not familiar with Gentoo do not always know that choice is what Gentoo is all
about.

1.

Choosing the Right Installation Medium
You can install Gentoo in many ways. You can use our LiveCD, an existing
distribution etc.

2.

Configuring your Network
If you want to install Gentoo using the Internet, you need to setup networking.

3.

Preparing the Disks
To be able to install Gentoo, you must create the necessary partitions. This chapter
describes how to partition a disk for future usage.

4.

Installing the Gentoo Installation Files
Gentoo installs work through socalled stage-files. In this chapter we describe how
you extract a stage-file and configure Portage.

5.

Installing the Gentoo Base System
Independent of what stage you chose, the eventual result is that you have a Gentoo
base system at your disposal. This chapter describes how to progress to that
stadium.

6.

Configuring the Kernel
The Linux kernel is the core of every distribution. This chapter explains how to
configure your kernel.

7.

Configuring your System
You need to edit some important configuration files. In this chapter you receive an
overview of these files and an explanation on how to proceed.

8.

Configuring the Bootloader
Several bootloaders exist. Each one of them has its own way of configuration. In
this chapter we’ll describe all possibilities for you and step you through the process
of configuring a bootloader to your needs.

9.

Installing Necessary System Tools
As mentioned before, Gentoo is about choices. In this chapter we help you choose
and install some important tools.

10.

Finalizing your Gentoo Installation
You’re almost done. We’ll just create one (or more) users for your system and leave
the installation to reboot into a brand new Gentoo system.

11.

Where to go from here?
Now you have your Gentoo system, but what’s next?

12.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

1

2

1. About the Gentoo Linux Installation
Content:

Introduction
Prebuilt or Compile-All?

1.a. Introduction

Welcome!

First of all, welcome to Gentoo. You are about to enter the world of choices and
performance. Gentoo is all about choices. When installing Gentoo, this is made clear to
you several times -- you can choose how much you want to compile yourself, how to
install Gentoo, what system logger you want, etc.

Gentoo is a fast, modern metadistribution with a clean and flexible design. Gentoo is built
around free software and doesn’t hide to its users what is beneath the hood. Portage, the
package maintenance system which Gentoo uses, is written in Python, meaning you can
easily view and modify the source code. Gentoo’s packaging system uses source code
(although support for precompiled packages is included too) and configuring Gentoo
happens through regular textfiles. In other words, openness everywhere.

It is very important that you understand that choices are what makes Gentoo run. We try
not to force you onto anything you don’t like. If you feel like we do, please bugreport it.

How is the Installation Structured?

The Gentoo Installation can be seen as a 10-step procedure, corresponding to chapters 2
- 11. Every step results in a certain state:

After step 1, you are in a working environment ready to install Gentoo
After step 2, your internet connection is ready to install Gentoo (this can be optional
in certain situations)
After step 3, your hard disks are initialized to house your Gentoo installation
After step 4, your installation environment is prepared and you are chrooted into the
new environment
After step 5, core packages, which are the same on all Gentoo installations, are
installed
After step 6, you have compiled your Linux kernel
After step 7, you have written most of your Gentoo system configuration files
After step 8, your choice of bootloader has been installed and configured
After step 9, necessary system tools (which you can choose from a nice list) are
installed
After step 10, you are logged in into your new Gentoo installation

When you are given a certain choice, we try our best to explain what the pros and cons
are. We will continue then with a default choice, identified by "Default: " in the title. The
other possibilities are marked by "Alternative: ". Do not think that the default is what we
recommend. It is however what we believe most users will use.

Sometimes you can pursue an optional step. Such steps are marked as "Optional: " and
are therefore not needed to install Gentoo. However, some optional steps are depending
on a previous decision you made. We will inform you when this happens, both when you
make the decision, and right before the optional step is described.

What are my Options?

You can install Gentoo in many different ways. You can download and install from one of
our LiveCDs (installation CDs), from an existing distribution, from a bootable CD (such as
Knoppix), from a netbooted environment, etc.

You also have several possibilities: you can compile your entire system from scratch or
install prebuilt packages to have your Gentoo environment up and running in no time.

3

And of course you have intermediate solutions in which you don’t compile everything but
start from a semi-ready system.

Troubles?

If you find a problem in the installation (or in the installation documentation), please visit
our bugtracking system and check if the bug is known. If not, please create a bugreport
for it so we can take care of it. Do not be afraid of the developers who are assigned to
(your) bugs -- they generally don’t eat people.

If you are uncertain if the problem is a user-problem (some error you made despite
having read the documentation carefully) or a software-problem (some error we made
despite having tested the installation/documentation carefully) you are free to join
#gentoo on irc.freenode.net. Of course, you are welcome otherwise too :)

If you have a question regarding Gentoo, check out our Frequently Asked Questions,
available from the Gentoo Documentation. You can also view the FAQs on our forums. If
you can’t find the answer there ask on #gentoo, our IRC-channel on irc.freenode.net.
Yes, several of us are freaks who sit on IRC :-)

1.b. Prebuilt or Compile-All?

What is the Gentoo Reference Platform?

The Gentoo Reference Platform, from now on abbreviated to GRP, is a snapshot of
prebuilt packages users (that means you!) can install during the installation of Gentoo to
speed up the installation process. The GRP consists out of all packages required to have
a fully functional Gentoo installation. They are not only sufficient to have a base
installation up to speed in no time, but all lengthier builds (such as KDE, XFree, GNOME,
OpenOffice, Mozilla, ...) are available as GRP packages too.

However, these prebuilt packages aren’t maintained during the lifetime of the Gentoo
distribution. They are snapshots released at every Gentoo release and make it possible
to have a functional environment in a short amount of time. You can then upgrade your
system in the background while working in your Gentoo environment.

How Portage Handles GRP Packages

In order for Portage to be able to install the prebuilt packages they must reside in the
/usr/portage/packages/All directory. If you are installing Gentoo from a LiveCD that
houses these packages and you wish to install Gentoo using the GRP packages, we will
tell you how to copy over those packages to this location later.

However, having the packages alone isn’t sufficient: your Portage tree - the collection of
ebuilds (files that contain all information about a package, such as its description,
homepage, sourcecode URLs, compilation instructions, dependencies, etc.) - must be
synchronised with the GRP set: the versions of the available ebuilds and their
accompanying GRP packages must match.

For this reason you will have to install a Portage snapshot instead of synchronising
Portage with the latest available tree if you want to use the GRP installation method.

Is GRP Available?

Not all architectures provide GRP packages. That doesn’t mean GRP isn’t supported on
the other architectures, but it means that we don’t have the resources to build and test
the GRP packages.

At this moment we provide GRP packages for the following architectures:

The x86 architecture (x86, i686, pentium3, pentium4, athlon-xp) and the special
purpose Gentoo Hardened profile
The amd64 architecture (amd64)
The sparc architecture (sparc64)
The ppc architecture (ppc, G3, G4)

4

The Gentoo Hardened project offers their own GRP set (and stages) focused on building
a proactively secure system. Anyone looking to build a server on the x86 architecture
should investigate this option.

If your architecture (or subarchitecture) isn’t on this list, you are not able to opt for a GRP
installation.

Now that this introduction is over, let’s continue with Choosing the Right Installation
Medium.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

5

6

2. Choosing the Right Installation
Medium
Content:

Hardware Requirements
Make your Choice
Default: Download, Burn and Boot a Gentoo LiveCD
Alternative: Download, Burn and Boot Knoppix
Alternative: Net Booting

2.a. Hardware Requirements

Introduction

Before we start, we first list what hardware requirements you need to successfully install
Gentoo on your box. This of course depends on your architecture.

Architectures

Gentoo is officially available for seven architectures, and has experimental support for
one more. The official architectures are x86 (including all subarchitectures, like Pentium,
Athlon, etc.), sparc (both Sparc32 and Sparc64), ppc (PowerPC), hppa, alpha, mips and
amd64. Experimental support is available for ia64.

Assuming you know your architecture, check the following requirements before you
continue with the Gentoo installation:

You need at least 1 Gb of free disk space
If you do not use prebuilt packages, you need at least 300 Mb of memory (RAM +
swap)
For the x86 architecture, you need a 486+ processor and at least 64 megabytes of
memory
For the Alpha architecture, you should check with the Alpha/Linux FAQ
For the hppa architecture, you should check with the PA Team website
For the PowerPC architecture, you need at least a PowerPC (at best a G3 or G4
like the iMac, iBook, PowerBook, etc.)
For the SPARC architecture, you should check with the UltraLinux FAQ
For the MIPS architecture, you should check with the MIPS Hardware
Requirements document
For the AMD64 architecture, you should check with AMD64 Tech Notes

2.b. Make your Choice

Introduction

Still interested in trying out Gentoo? Well, then it is now time to choose the installation
medium you want to use. Yes, you have the choice, no, they are not all equal, and yes,
the result is always the same: a Gentoo base system.

The installation media we will describe are:

Gentoo LiveCDs
Knoppix
Other Distribution
Net Booting

Every single media has its advantages and disadvantages. We will list the pros and cons
of every medium so you have all the information to make a justified decision. But before
we continue, let’s explain our three-stage installation.

The Three Stages

7

Gentoo Linux can be installed using one of three stage tarball files. The one you choose
depends on how much of the system you want to compile yourself. The stage1 tarball is
used when you want to bootstrap and build the entire system from scratch. The stage2
tarball is used for building the entire system from a bootstrapped "semi-compiled" state.
The stage3 tarball already contains a basic Gentoo Linux system that has been built for
you. As we will explain later, you can also install Gentoo without compiling anything
(except your kernel and some optional packages). If you want this, you have to use a
stage3 tarball.

Now what stage do you have to choose?

Starting from a stage1 allows you to have total control over the optimization settings and
optional build-time functionality that is initially enabled on your system. This makes
stage1 installs good for power users who know what they are doing. It is also a great
installation method for those who would like to know more about the inner workings of
Gentoo Linux.

Stage1 Pros and Cons

+ Allows you to have total control over the optimization settings and optional build-time functionality that
is initially enabled on your system

+ Suitable for powerusers that know what they are doing

+ Allows you to learn more about the inner workings of Gentoo

- Takes a long time to finish the installation

- If you don’t intend to tweak the settings, it is probably a waste of time

Stage2 installs allow you to skip the bootstrap process and doing this is fine if you are
happy with the optimization settings that we chose for your particular stage2 tarball.

Stage2 Pros and Cons

+ You don’t need to bootstrap

+ Faster than starting with stage1

+ You can still tweak your settings

- You cannot tweak as much as with a stage1

- It’s not the fastest way to install Gentoo

- You have to accept the optimizations we chose for the bootstrap

Choosing to go with a stage3 allows for the fastest install of Gentoo Linux, but also
means that your base system will have the optimization settings that we chose for you
(which to be honest, are good settings and were carefully chosen to enhance
performance while maintaining stability). stage3 is also required if you want to install
Gentoo using prebuilt packages.

Stage3 Pros and Cons

+ Fastest way to get a Gentoo base system

- You cannot tweak the base system - it’s built already

- You cannot brag about having used stage1 or stage2

Write down (or remember) what stage you want to use. You need this later when you
decide what LiveCD (or other installation medium) you want to use. You might be
interested to know that, if you decide to use different optimization settings after having
installed Gentoo, you will be able to recompile your entire system with the new
optimization settings.

Now take a look at the available installation media:

Gentoo LiveCDs
Gentoo basic LiveCDs
Gentoo 2-CD LiveCD Set
Gentoo KDE/Gnome LiveCD

Knoppix
Existing Distribution

8

Net Booting

Gentoo LiveCDs

The Gentoo LiveCDs are bootable CDs which contain a self-sustained Gentoo
environment. They allow you to boot Linux from the CD. During the boot process your
hardware is detected and the appropriate drivers are loaded. They are maintained by
Gentoo developers and are available for all supported architectures (x86, alpha, sparc,
ppc, hppa, amd64). Even more, some architectures have several available LiveCDs.

All LiveCDs allow you to boot, setup networking, initialize your partitions and start
installing Gentoo from the Internet. However, some LiveCDs also contain all necessary
source code or even precompiled packages so you are able to install Gentoo without
networking.

We provide several types of LiveCDs. The following table shows you what LiveCDs are
available for your architecture:

Architecture Basic LiveCD 2-CD LiveCD Set KDE/Gnome LiveCD
x86 + +
sparc + +
ppc + + +
hppa +
alpha +
amd64 +

Now what do these LiveCDs contain?

Gentoo basic LiveCDs

This is a small, no-nonsense, bootable CD which sole purpose is to boot the system,
prepare the networking and continue with the Gentoo installation. It does not contain any
stages (or, in some cases, a single stage1 file), source code or precompiled packages.

Basic
LiveCD Pros and Cons

+ Smallest download

+ Suitable for a complete architecture

+ You can do a stage1, stage2 or stage3 by getting the stage tarball off the net

- Contains no stages, no portage snapshot, no GRP packages and therefore not suitable for
networkless installation

Gentoo 2-CD LiveCD Set

The first CD is a bootable CD suitable to install Gentoo without networking. It contains a
stage1 and several stage3 tarballs (optimized for the individual subarchitectures) and the
necessary sourcecode to install Gentoo from stage1 without the need for a working
network connection. Some architectures also provide stage2 tarballs and a set of prebuilt
packages on the first CD.

The second CD only contains precompiled packages and can be used to install software
after a succesfull Gentoo Installation. To install Gentoo, you only need CD-1, but if you
want OpenOffice.org, Mozilla, KDE, GNOME etc. without having to compile every single
one of them, you need CD-2 too.

We provide both a "default" LiveCD set, bootable on all subarchitectures for a specific
architecture, as well as optimized LiveCDs (CD 2) for the various subarchitectures (such
as Athlon-XP, G4, etc.).

2-CD LiveCD Set Pros and Cons

+ Optimized to your architecture and subarchitecture

+ Provide precompiled packages for fast Gentoo installations

+ Contains everything you need. You can even install without a network connection.

9

- Huge download

Gentoo KDE/Gnome LiveCD

This cd contains a complete live Gentoo environment featuring the KDE and Gnome
desktop environment, an apache webserver, several webbrowsers, irc clients,
firewall/router stuff, network auditing stuff, a lot of CLI tools... It can be used to fix a
broken filesystem. The kde/gnome livecd contains an entire gcc (distcc, ccache enabled)
toolchain; boot all systems on your network using this cd and experience the power of
distributed compilation. This cd can be used to install Gentoo, but does not contain GRP,
source code, nor a portage snapshot or stages.

KDE/Gnome
LiveCD Pros and Cons

+ You can work with Gentoo without installing it on your hard disk

+ You can also use it to install Gentoo :)

- Huge download, but doesn’t contain a portage snapshot, stages, precompiled packages or
source code.

Knoppix

Knoppix is a well-known bootable CD with a fully working desktop environment. It allows
you to boot from CD and, without interaction with your disk, start up office applications or
system tools. In our case, we will use the system and networking tools to install Gentoo.

If you plan on using Knoppix, you can download it from the Knoppix homepage.

Existing Distribution

If you start installing from another already installed Linux distribution, then you benefit
from all the tools already available in your installed Linux distribution. If you want to install
Gentoo from an existing distribution, you should skip the rest of this chapter and continue
with Configuring your Network.

Net Booting

In some cases you do not have the possibility to boot from a CD or use an existing
installation to install Gentoo from. In case your system has a network interface and
BIOS/ROM capable of performing a netboot (PXE) you can have it download a small
system at boot time and install from that system onwards.

In case you want to use the net boot method (MIPS users have no choice) you should
already have a working DHCP and TFTP server. Information on setting up a DHCP
server and TFTP server are available in the Diskless-HOWTO.

Depending on your setup, you might need to create or download a kernel image for your
system.

Choosing the Installation Medium

Now make your choice of installation medium and continue with the appropriate section.
As this is a Gentoo handbook, we’ll default to using the Gentoo LiveCDs, but you can find
the necessary information about using the other installation media as alternative sections.

Default: Download, Burn and Boot a Gentoo LiveCD
Alternative: Download, Burn and Boot Knoppix
Alternative: Net Booting

2.c. Default: Download, Burn and Boot a Gentoo LiveCD

Downloading and Burning the LiveCDs

You have chosen to use a Gentoo LiveCD (if not, then you are reading the wrong
section). We’ll first start by downloading and burning the chosen LiveCD. We previously

10

discussed the several available LiveCDs, but where can you find them?

The following table lists the relative paths where you can find the LiveCD ISOs (CD
images). The path is relative to the main Gentoo directory on any of our mirrors.

Architecture Path
x86 releases/2004.0/x86/livecd

sparc releases/2004.0/sparc/livecd

ppc releases/2004.0/ppc/livecd

hppa experimental/hppa/livecd

alpha experimental/alpha/livecd

amd64 releases/2004.0/amd64/livecd

Visit one of our mirrors and go to the path where the LiveCD(s) of your choice are
located. Inside that directory you’ll find so-called ISO-files. Those are full CD images
which you can write on a CD-R. If you find several ISOs with different date-tags (such as
gentoo-2004.0-x86-20040121.iso) take the most recent one.

In case you wonder if your downloaded file is corrupted or not, you can check its MD5
checksum and compare it with the MD5 checksum we provide (such as
gentoo-2004.0-x86-20040121.iso.md5). You can check the MD5 checksum with the
md5sum tool under Linux/Unix or md5summer for Windows.

Note: Please check the descriptions on the Gentoo Store to know what LiveCD (or stage) you should use for
your CPU. A common mistake is choosing a LiveCD (or stage) for a CPU that is more recent than yours
(such as "athlon-xp" for a regular AMD Athlon).

To burn the downloaded ISO(s), you have to select raw-burning. How you do this is
highly program-dependent. We will discuss a couple of popular tools on how to do this.

With EasyCD Creator you select File, Record CD from CD image. Then you
change the Files of type to ISO image file. Then locate the ISO file and click
Open. When you click on Start recording the ISO image will be burned correctly
onto the CD-R.
With Nero Burning ROM, select File, Burn CD image. Set the type of file to *.*
and select the ISO file. Older versions of Nero will tell you they don’t recognize the
format -- confirm here, it does recognize it but doesn’t know it yet :) In the next
dialog, set the following parameters:

Type of image: Data Mode 1
Block size: 2048 bytes
File precursor and length of the image trailer: 0 bytes
Scrambled: no
Swapped: no

Now click on OK and then Burn (the CD-R)
With cdrecord, you simply type cdrecord dev=/dev/hdc (replace /dev/hdc with
your CD-RW drive’s device path) followed by the path to the ISO file :)
With Mac OS X Panther, launch Disk Utility from Applications/Utilities,
select Open from the Images menu, select the mounted disk image in the main
window and select Burn in the Images menu.
With Mac OS X Jaguar, launch Disk Copy from Applications/Utilities, select
Burn Image from the File menu, select the ISO and click the Burn button.

The following subsections explain how to boot the architecture-specific LiveCDs. Be sure
to pick the subsection which is relevant for your architecture.

Booting the x86 or AMD64 LiveCD(s)
Booting the Alpha LiveCD(s)
Booting the HPPA LiveCD(s)
Booting the SPARC LiveCD(s)
Booting the PPC LiveCD(s)

Booting the x86 or AMD64 LiveCD(s)

11

Important: This subsection is for x86 and amd64 architectures only. Read this whole subsection before
continuing, as you will not always have the time to read before acting.

Once you have burned your installation CDs, it is time to boot them. Reboot your system
and enter the BIOS. This is usually done by hitting DEL, F1 or ESC, depending on your
BIOS. Inside the BIOS, change the boot order so that the CD-ROM is tried before the
hard disk. This is often found under "CMOS Setup". If you don’t do this, your system will
just reboot from the hard disk, ignoring the CD-ROM.

Now place the installation CD in the CD-ROM drive (duh) and reboot. You should see a
fancy boot screen with the Gentoo Linux logo on it. At this screen, you can hit Enter to
begin the boot process with the default boot options, or boot the LiveCD with custom boot
options by specifying a kernel followed by boot options and then hitting Enter.

Specifying a kernel? Yes, we provide several kernels on our LiveCDs. The default one is
gentoo. Other kernels are smp, which activates support for multi-cpu systems and the
-nofb variants which disable framebuffer.

Below you’ll find a short overview on the available kernels:

Kernel Description
gentoo Default kernel with framebuffer support
smp Kernel with support for multiple CPUs
gentoo-nofb Same as gentoo but without framebuffer support
smp-nofb Same as smp but without framebuffer support

Note: Some LiveCDs provide extra kernels, or don’t provide kernels listed in this document. To list the
available kernels at boot-time, press F1 when you are at the bootscreen.

You can also provide kernel options. They represent optional settings you can
(de)activate at will. The following table explains all available kernel options.

Kernel
Option Description

acpi Activate ACPI support
doataraid Activate support for ATA RAID devices
dofirewire Activate support for FireWire devices
dokeymap Ask the user for his keyboard setting (default: us)
dopcmcia Activate PCMCIA support
doscsi Activate support for SCSI devices
noapm Deactivate APM support
nodetect Deactivate hardware detection (kudzu/hotplug)
nodhcp Do not use DHCP to query for an IP address
noevms Deactivate EVMS support
nohotplug Deactivate hotplug (kernel loading program)
nousb Deactivate USB support
ide=nodma Deactivate DMA support

cdcache Cache the entire runtime portion of the CD in memory, which allows you to unmount your CD and
use another one during installation.

Note: Some LiveCDs provide extra boot options, or don’t provide boot options listed in this document. To list
the available kernels at boot-time, press F2 when you are at the bootscreen.

Now boot your CD, select a kernel (if you are not happy with the default gentoo kernel)
and boot options. As an example, we show you how to boot the gentoo kernel, with
dopcmcia cdcache as kernel parameters:

Code listing 1: Booting a LiveCD

boot: gentoo dopcmcia cdcache

You will then be greeted with another boot screen and progress bar. Once the boot

12

process completes, you will be automatically logged in to the "Live" Gentoo Linux as
"root", the super user. You should have a root ("#") prompt on the current console and
can also switch to other consoles by pressing Alt-F2, Alt-F3 and Alt-F4. Get back to the
one you started on by pressing Alt-F1.

Now continue with Extra Hardware Configuration.

Booting the Alpha LiveCD(s)

Important: This subsection is for alpha architectures only. Read this whole subsection before continuing, as
you will not always have the time to read before acting.

When your Alpha is powered on, the first thing that gets started is the firmware. It is
loosely synonymous with the BIOS software on PC systems. There are two types of
firmware on Alpha systems: SRM (Systems Reference Manual) and ARC (Advanced
Risc Console).

SRM is based on the Alpha Console Subsystem specification, which provides an
operating environment for OpenVMS, Tru64 UNIX, and Linux operating systems. ARM is
based on the Advanced RISC Computing (ARC) specification, which provides an
operating environment for Windows NT.

If your Alpha system supports both SRC and ARCs (ARC, AlphaBIOS, ARCSBIOS) you
should follow these instructions for switching to SRM. If your system already uses SRM,
you are all set. If your system can only use ARCs (Ruffian, nautilus, xl, etc.) you will need
to choose MILO later on when we are talking about bootloaders.

Now to boot an Alpha LiveCD, put the CD-ROM in the tray and reboot the system. You
can use SRM to boot the LiveCD. If you cannot do that, you will have to use MILO. If you
don’t have MILO installed already, use one of the precompiled MILO images available on
taviso’s homepage.

Code listing 2: Booting a CD-ROM using SRM

(Substitute dqa0 with your CD-ROM drive device)
>>> boot dqa0 -flags 0

Code listing 3: Booting a CD-ROM using MILO

(Substitute hdb with your CD-ROM drive device)
MILO> boot hdb:boot/vmlinuz initrd=initrd.img root=/dev/ram0 init=/linuxrc

You should have a root ("#") prompt on the current console and can also switch to other
consoles by pressing Alt-F2, Alt-F3 and Alt-F4. Get back to the one you started on by
pressing Alt-F1.

Now continue with Extra Hardware Configuration.

Booting the HPPA LiveCD(s)

Important: This subsection is for HPPA architectures only. Read this whole subsection before continuing, as
you will not always have the time to read before acting.

Boot your HPPA system. During the boot process, you will see a message similar to the
following:

Code listing 4: HPPA boot message

Searching for Potential Boot Devices.
To terminate search, press and hold the ESCAPE key.

When this message appears, press and hold the Esc-key until an option menu appears.
This can take a while, be patient. By default, you should enter the BOOT_ADMIN
console. If you receive an option menu, choose Enter Boot Administration mode to

13

enter the BOOT_ADMIN console. You should now have an ’>’ prompt.

Put the Gentoo LiveCD in the CD-ROM. If you do not know the SCSI ID of your CD-ROM
drive, your PA-RISC station will search for it when you issue the search command.

Code listing 5: Searching for SCSI ID

> search
Searching for Devices with Bootable Media.
To terminate search, please press and hold the ESCAPE key.

Your PA-RISC station will now display all the available boot media. This is an example
result of this command :

Code listing 6: Available boot media

Device Selection Device Path Device Type and Utilities

P0 scsi.5.0 TOSHIBA CD-ROM XM-3301TA
 IPL
P1 scsi.2.0 COMPAQ ST32550N
 IPL
P2 lan.0010a7-06d1b6.3.6 server
 IPL

To boot from a CD-ROM you need the accompanying Device Path. For instance, if we
want to boot from the TOSHIBA CD-ROM in the above example, we would need to type
the following command:

Code listing 7: Booting from a CD-ROM

> boot scsi.5.0 ipl

Trying scsi.5.0

The ipl keyword (Initial Program Loader) tells palo (the PA-RISC boot LOader) to enter
interactive mode. This will allow you to change, for example, the kernel boot parameters.

When the boot is successful, palo will start in interactive mode:

Code listing 8: PALO Interactive Mode

Boot path initialized.
Attempting to load IPL.

Hard booted.
palo ipl 1.2 root@b180l.da-kot Tue Apr 8 12:43:07 CEST 2003

Boot image contains:
 0/vmlinux32 4028015 bytes @ 0x1520000
 0/ramdisk 834748 bytes @ 0xf800
Current command line:
0/vmlinux initrd=initrd.gz TERM=linux console=tty root=/dev/ram0 init=/linuxrc
 0: 0/vmlinux
 1: initrd=initrd.gz
 2: TERM=linux
 3: console=tty
 4: root=/dev/ram0
 5: init=/linuxrc

Edit which field?
(or ’b’ to boot with this command line)?

These parameters are suitable for most situations.

If you need extra features you must add the apropriate keyword(s) to the end of the
command line. To add a keyword, edit the last field, add a space and type your keyword.
The only implemented keyword as of now is cdcache which tells the LiveCD to load itself
into RAM, allowing you to unmount the CD.

14

Code listing 9: Adding cdcache as boot option

(or ’b’ to boot with this command line)? 5
init=/linuxrc cdcache

Now that you have tweaked your kernel boot params, boot it.

Code listing 10: Booting the kernel

(or ’b’ to boot with this command line)? b

You should have a root ("#") prompt on the current console and can also switch to other
consoles by pressing Alt-F2, Alt-F3 and Alt-F4. Get back to the one you started on by
pressing Alt-F1.

Now continue with Extra Hardware Configuration.

Booting SPARC LiveCD(s)

Important: This subsection is for SPARC architectures only. Read this whole subsection before continuing, as
you will not always have the time to read before acting.

Insert the Gentoo LiveCD in the CD-ROM and boot your system. During startup, press
Stop-A to enter OpenBootPROM (OBP). Once you are in the OBP, boot from the
CD-ROM:

Code listing 11: Booting the LiveCD

ok boot cdrom

You will be greeted by the SILO boot manager (on the LiveCD). Type in gentoo
(single-CPU kernel) or smp (multi-CPU kernel) and press enter to continue booting the
system. In the following example we’ll boot the gentoo kernel.

Code listing 12: Continue booting from the LiveCD

boot: gentoo

Once the LiveCD is booted, you will be greeted by a login prompt. Log on as root. There
is no password, so when you are asked for one, press Enter.

Code listing 13: Logging on onto the LiveCD

login: root
password: (Press Enter here)

You should have a root ("#") prompt on the current console and can also switch to other
consoles by pressing Alt-F2, Alt-F3 and Alt-F4. Get back to the one you started on by
pressing Alt-F1.

Continue with Extra Hardware Configuration.

Booting the PPC LiveCD(s)

Place the LiveCD in the CD-ROM and reboot the system. Hold down the ’C’ key at
bootup (or run an OldWorld bootloader like BootX or quik). You will be greeted by a
friendly welcome message and a boot: prompt at the bottom of the screen.

At this prompt, hit enter, and a complete Gentoo Linux environment will be loaded from
the CD. If you experience problems booting, choose the -safe option at boot. The safe
option passes the following extra arguments to the kernel: append="video=ofonly nol3
init=/linuxrc".

15

When the LiveCD is booted, you will be greeted with a login prompt. Log on as root and
leave the password blank (i.e. press Enter).

Code listing 14: Logging on onto the LiveCD

login: root
password: (Press Enter here)

You should have a root ("#") prompt on the current console and can also switch to other
consoles by pressing Alt-fn-F2, Alt-fn-F3 and Alt-fn-F4. Get back to the one you started
on by pressing Alt-fn-F1.

If you are installing Gentoo on a system with a non-US keyboard, use loadkeys to load
the keymap for your keyboard. To list the available keymaps, execute ls
/usr/share/keymaps.

Code listing 15: Listing available keymaps

ls /usr/share/keymaps

To load a keymap, use loadkeys.

Code listing 16: Loading a keymap

loadkeys be2-latin1

Now continue with Extra Hardware Configuration.

Extra Hardware Configuration

When the Live CD boots, it tries to detect all your hardware devices and loads the
appropriate kernel modules to support your hardware. In the vast majority of cases, it
does a very good job. However, in some cases, it may not auto-load the kernel modules
you need. If the PCI auto-detection missed some of your system’s hardware, you will
have to load the appropriate kernel modules manually.

In the next example we try to load the 8139too module (support for certain kinds of
network interfaces):

Code listing 17: Loading kernel modules

modprobe 8139too

Optional: Tweaking Hard Disk Performance

If you are an advanced user, you might want to tweak the IDE hard disk performance
using hdparm. With the -tT options you can test the performance of your disk (execute it
several times to get a more precise impression):

Code listing 18: Testing disk performance

hdparm -tT /dev/hda

To tweak, you can use any of the following examples (or experiment yourself) which use
/dev/hda as disk (substitute with your disk):

Code listing 19: Tweaking hard disk performance

Activate DMA: # hdparm -d 1 /dev/hda
Activate DMA + Safe Performance-enhancing Options: # hdparm -d 1 -A 1 -m 16 -u 1 -a 64 /dev/hda

Optional: User Accounts

16

If you plan on giving other people access to your installation environment or you want to
chat using irssi without root privileges (for security reasons), you need to create the
necessary user accounts and change the root password.

To change the root password, use the passwd utility:

Code listing 20: Changing the root password

passwd
New password: (Enter your new password)
Re-enter password: (Re-enter your password)

To create a user account, we first enter his credentials, followed by its password. We use
useradd and passwd for these tasks. In the next example, we create a user called "john".

Code listing 21: Creating a user account

useradd john
passwd john
New password: (Enter john’s password)
Re-enter password: (Re-enter john’s password)

You can change your user id from root to the newly created user by using su:

Code listing 22: Changing user id

su john -

Optional: Starting the SSH Daemon

If you want to allow other users to access your computer during the Gentoo installation
(perhaps because those users are going to help you install Gentoo, or even do it for you),
you need to create a user account for them and perhaps even provide them with your
root password (only do that if you fully trust that user).

To fire up the SSH daemon, execute the following command:

Code listing 23: Starting the SSH daemon

/etc/init.d/sshd start

Now continue with the next chapter on Configuring your Network.

2.d. Alternative: Download, Burn and Boot Knoppix

Important: You can only use Knoppix on x86-based systems.

You can download Knoppix from the Knoppix homepage. Knoppix too is available as
ISO-files. After having downloaded the Knoppix ISO file, burn it to a CD-R. You have to
use "raw" burning. We’ll explain how to do this with a couple of popular tools.

With EasyCD Creator you select File, Record CD from CD image. Then you
change the Files of type to ISO image file. Then locate the ISO file and click
Open. When you click on Start recording the ISO image will be burned correctly
onto the CD-R.
With Nero Burning ROM, select File, Burn CD image. Set the type of file to *.*
and select the ISO file. Older versions of Nero will tell you they don’t recognize the
format -- confirm here, it does recognize it but doesn’t know it yet :) In the next
dialog, set the following parameters:

Type of image: Data Mode 1
Block size: 2048 bytes
File precursor and length of the image trailer: 0 bytes
Scrambled: no

17

Swapped: no
Now click on OK and then Burn (the CD-R)
With cdrecord, you simply type cdrecord dev=/dev/hdc (replace /dev/hdc with
your CD-RW drive’s device path) followed by the path to the ISO file :)

By default, Knoppix boots into a KDE 3.0 desktop. The first thing you’ll have to do is set
the root password for knoppix. Open a konsole and type in the following command:

Code listing 24: Setting root password for Knoppix

$ sudo passwd root
Password: (Enter a password)
Re-enter password: (Re-enter the password)

Next, su to root and set the root home directory to /root. If you do not do this, you will
receive errors when emerging about "/home/root: not found".

Code listing 25: Changing root home directory

$ su -
Password: (Enter the root password created above)
usermod -d /root -m root

Now exit the current shell by typing exit and su back into root. This will load the made
changes.

Code listing 26: Loading the changes

exit
$ su -
Password: (Enter the root password)

Create the /mnt/gentoo mountpoint:

Code listing 27: Creating the /mnt/gentoo mountpoint

mkdir -p /mnt/gentoo

Now continue with Configuring your Network.

2.e. Alternative: Net Booting

To be able to install Gentoo, the image you download from the TFTP server should
provide the necessary tools to create filesystems, create and mount partitions, extract a
tarball and chroot. You can download existing net boot images which have all tools in
them...

At this time we know of only one architecture that has net boot images available and that
is the MIPS architecture.

Net Booting a MIPS System

Net Booting a MIPS System

First download one of the available net boot images from
http://dev.gentoo.org/~kumba/mips/netboot/.

Now configure your DHCP server to send this file to the booting client. SGI machines
however need some minor tweaks to the host system in order for TFTP to work properly:

18

Code listing 28: Some fixes to SGI machines to have TFTP work properly

(Disable "Path Maximum Transfer Unit", otherwise SGI Prom won’t find the kernel)
echo 1 > /proc/sys/net/ipv4/ip_no_pmtu_disc
(Set the port range usable by the SGI Prom)
echo "2048 32767" > /proc/sys/net/ipv4/ip_local_port_range

Now power on your machine, get into the PROM monitor and issue the command to boot
the kernel over the network:

Code listing 29: Net booting a MIPS

 Running power-on diagnostics

System Maintenance Menu

1) Start System
2) Install System Software
3) Run Diagnostics
4) Recover System
5) Enter Command Monitor

Option? 5
Command Monitor. Type "exit" to return to the menu.
>> bootp(): root=/dev/ram0

Note: You may have to press the Esc key to get into the menu above, otherwise, the system will attempt to
boot the system directly.

Sometimes netbooting is a tricky endeavour. The following PROM commands below may
help, but this is not guaranteed. If your machine refuses to netboot, double check things
on the host TFTP machine to make sure that:

dhcpd is giving the SGI Machine an IP Address
Permissions are set properly in your tftp folder (typically /tftpboot)
Check system logs to see what the tftp server is reporting (errors perhaps)
Pray to a Tux plushie (this may or may not work, and is not an officially supported
troubleshooting technique)

Code listing 30: Net booting tricks

>> resetenv
>> unsetenv netaddr
>> unsetenv dlserver
>> init
>> bootp(): root=/dev/ram0

If all things go well, you are now dropped off at busybox’ ash shell. You can then continue
with Configuring your Network.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

19

20

3. Configuring your Network
Content:

You can do without, but...
Automatic Network Detection
Automatic Network Configuration
Manual Network Configuration

3.a. You can do without, but...

Who can do without?

Depending on the medium you chose to install Gentoo from, you can or cannot continue
without networking (and Internet). No, we are not playing with your mind =)

Generally you will need to setup networking (and Internet). However, Gentoo also
provides the possibility to install without a network connection. This exception is only
possible with the following installation media:

Gentoo x86 2-CD Installation LiveCD sets (including x86, i686, pentium3, pentium4
and athlon-xp)
Gentoo PPC 2-CD Installation LiveCD sets (including G3 and G4)
Gentoo Sparc 2-CD Installation LiveCD sets

Why do I need networking?

Installing Gentoo from the Internet results in a fully updated Gentoo Installation. You’ll
have an installation based on the most recent Portage tree (which is the collection of
packages we provide together with the tools to manage your software). This is also the
reason why a network-installation is preferred. However, some people cannot or do not
want to install Gentoo on a system with a running Internet connection.

If you are in this situation you will need to use the 2CD-sets. These sets include the
source code, a snapshot of the portage-tree and the tools to install a Gentoo
base-system and beyond. This method comes at a price: You won’t have the very latest
software, although differences will be minimal.

If you want to follow this networkless installation you have to use such a 2-CD set, skip
the rest of this chapter and continue with Preparing the Disks. Otherwise, continue with
the networking configuration sections below.

Optional: Configure Proxy

If you access the Internet through a proxy, you might need to setup proxy information
during the installation. It is very easy to define a proxy: you just need to define a variable
which contains the proxy server information.

In most cases, you can just define the variables using the server hostname. As an
example, we assume the proxy is called proxy.gentoo.org and the port is 8080.

Code listing 1: Defining proxy servers

(If the proxy filters HTTP traffic)
export http_proxy="http://proxy.gentoo.org:8080"
(If the proxy filters FTP traffic)
export ftp_proxy="ftp://proxy.gentoo.org:8080"
(If the proxy filters RSYNC traffic)
export RSYNC_PROXY="proxy.gentoo.org:8080"

If your proxy requires a username and password, you should use the following syntax for
the variable:

Code listing 2: Adding username/password to the proxy variable

21

http://username:password@server

For instance, for HTTP proxying with our previous proxy server and a username of "john"
with a password of "f00b_r" one would use:

Code listing 3: Authenticated Proxy

export http_proxy="http://john:f00b_r@proxy.gentoo.org:8080"

Networking from non-Gentoo Installation Mediums

Most information in this section is meant for users who booted from a Gentoo LiveCD.
However, you can install Gentoo from several other media. If you are in such a situation,
make sure that the used medium has a working Internet connection (the information
available in Using DHCP or Understanding Network Terminology might come in handy)
and continue with Preparing the Disks.

3.b. Automatic Network Detection

Maybe it just works?

If your system is plugged into an Ethernet network with a DHCP server, it is very likely
that your networking configuration has already been set up automatically for you. If so,
you should be able to take advantage of the many included network-aware commands on
the LiveCD such as ssh, scp, ping, irssi, wget and links, among others.

If networking has been configured for you, the /sbin/ifconfig command should list
some network interfaces besides lo, such as eth0:

Code listing 4: /sbin/ifconfig for a working network card

/sbin/ifconfig
eth0 Link encap:Ethernet HWaddr 00:50:BA:8F:61:7A
 inet addr:192.168.0.2 Bcast:192.168.0.255 Mask:255.255.255.0
 inet6 addr: fe80::50:ba8f:617a/10 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1498792 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1284980 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1984 txqueuelen:100
 RX bytes:485691215 (463.1 Mb) TX bytes:123951388 (118.2 Mb)
 Interrupt:11 Base address:0xe800

Testing the Network

You may want to try pinging your ISP’s DNS server (found in /etc/resolv.conf) and a
Web site of choice, just to make sure that your packets are reaching the net, DNS name
resolution is working correctly, etc..

Code listing 5: Further network testing

ping -c 3 www.yahoo.com

Are you able to use your network? If so, you can skip the rest of this section and continue
with Preparing the Disks. If not, bad luck, you’ll have to pursue a bit harder :)

3.c. Automatic Network Configuration

If the network doesn’t work immediately, some installation media allow you to use
net-setup (for regular networks), adsl-setup (for ADSL-users) or pptp (for
PPTP-users).

If you installation medium does not contain any of these tools, continue with Manual
Network Configuration.

22

Regular Ethernet users should continue with Default: Using net-setup
ADSL users should continue with Alternative: Using RP-PPPoE
PPTP users should continue with Alternative: Using PPTP

Default: Using net-setup

The simplest way to set up networking if it didn’t get configured automatically is to run the
net-setup script:

Code listing 6: Running the net-setup script

net-setup eth0

net-setup will ask you some questions about your network environment. When all is
done, you should have a working network connection. Test your network connection as
stated before. If the tests are positive, congratulations! You are now ready to install
Gentoo. Skip the rest of this section and continue with Preparing the Disks.

If your network still doesn’t work, continue with Manual Network Configuration.

Alternative: Using RP-PPPoE

Assuming you need PPPoE to connect to the internet, the LiveCD (any version) has
made things easy for you by including rp-pppoe. Use the provided adsl-setup script to
configure your connection. You will be prompted for the ethernet device that is connected
to your adsl modem, your username and password, the IPs of your DNS servers and if
you need a basic firewall or not.

Code listing 7: Using rp-pppoe

adsl-setup
adsl-start

If something goes wrong, double-check that you correctly typed your username and
password by looking at /etc/ppp/pap-secrets or /etc/ppp/chap-secrets and make
sure you are using the right ethernet device. If your ethernet device doesn’t exist, you will
have to load the appropriate network modules. In that case you should continue with
Manual Network Configuration as we explain how to load the appropriate network
modules there.

If everything worked, continue with Preparing the Disks.

Alternative: Using PPTP

If you need PPTP support, you can use pptpclient which is provided by our LiveCDs.
But first you need to make sure that your configuration is correct. Edit
/etc/ppp/pap-secrets or /etc/ppp/chap-secrets so it contains the correct
username/password combination:

Code listing 8: Editing /etc/ppp/chap-secrets

nano -w /etc/ppp/chap-secrets

Then adjust /etc/ppp/options.pptp if necessary:

Code listing 9: Editing /etc/ppp/options.pptp

nano -w /etc/ppp/options.pptp

When all that is done, just run pptp (along with the options you couldn’t set in
options.pptp) to connect the server:

23

Code listing 10: Connection to a dial-in server

pptp <server ip>

Now continue with Preparing the Disks.

3.d. Manual Network Configuration

Loading the Appropriate Network Modules

When the Live CD boots, it tries to detect all your hardware devices and loads the
appropriate kernel modules (drivers) to support your hardware. In the vast majority of
cases, it does a very good job. However, in some cases, it may not auto-load the kernel
modules you need.

If net-setup or adsl-setup failed, then you can safely assume that your networkcard
wasn’t found immediately. This means you will have to load the appropriate kernel
modules manually.

To find out what kernel modules we provide for networking, use ls:

Code listing 11: Searching for provided modules

ls /lib/modules/‘uname -r‘/kernel/drivers/net

If you find a driver for your network card, use modprobe to load the kernel module:

Code listing 12: Using modprobe to load a kernel module

(As an example, we load the pcnet32 module)
modprobe pcnet32

To check if your network card is now detected, use ifconfig. A detected network card
would result in something like this:

Code listing 13: Testing availability of your network card, successful

ifconfig eth0
eth0 Link encap:Ethernet HWaddr FE:FD:00:00:00:00
 BROADCAST NOARP MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

If however you receive the following error, the network card is not detected:

Code listing 14: Testing availability of your network card, failed

ifconfig eth0
eth0: error fetching interface information: Device not found

Assuming that you now have a detected network card, you can retry net-setup or
adsl-setup again (which should work now), but for the hardcore people amongst you,
we explain how to configure your network manually.

There are two possibilities here. Either you use DHCP (automatic IP retrieval), or you
manually setup your network using the ifconfig and route commands.

Using DHCP

DHCP (Dynamic Host Configuration Protocol) makes it possible to automatically receive
networking information (IP address, netmask, broadcast address, gateway, nameservers
etc.). This only works if you have a DHCP server in your network (or if your provider

24

provides a DHCP service). To have a network interface receive this information
automatically, use dhcpcd:

Code listing 15: Using dhcpcd

dhcpcd eth0

If this works (try pinging some internet server, like Google), then you are all set and ready
to continue. Skip the rest of this section and continue with Preparing the Disks.

Understanding Network Terminology

Note: If you know your IP address, broadcast address, netmask and nameservers, then you can skip this
subsection and continue with Using ifconfig and route.

If all above fails, you will have to configure your network manually. Have no fear, it is far
from difficult. But we are going to explain a certain amount of networking to you as you
will need it to be able to configure your network to your satisfaction. When you’re done
reading this, you will know what a gateway is, what a netmask serves for, how a
broadcast address is formed and why you need nameservers.

In a network, hosts are identified by their IP address (Internet Protocol address). Such an
address is a combination of four numbers between 0 and 255. Well, at least that is how
we perceive it. In reality, such an IP address consists of 32 bits (ones and zeros). Let’s
view an example:

Code listing 16: Example of an IP address

IP Address (numbers): 192.168.0.2
IP Address (bits): 11000000 10101000 00000000 00000010
 -------- -------- -------- --------
 192 168 0 2

Such an IP address is unique to a host as far as all accessible networks are concerned
(i.e. all hosts that you are able to reach must have unique IP addresses). To be able to
make a distinction between hosts inside a network, and hosts outside a network, the IP
address is divided in two parts: the network part and the host part.

The separation is written down with the netmask, a collection of ones followed by a
collection of zeros. The part of the IP that can be mapped on the ones is the
network-part, the other one is the host-part. As usual, the netmask can be written down
as an IP-address.

Code listing 17: Example of network/host separation

IP-address: 192 168 0 2
 11000000 10101000 00000000 00000010
Netmask: 11111111 11111111 11111111 00000000
 255 255 255 0
 +--------------------------+--------+
 Network Host

In other words, 192.168.0.14 is still part of our example network, but 192.168.1.2 is not.

The broadcast address is an IP-address with the same network-part as your network, but
with only ones as host-part. Every host on your network listens to this IP address. It is
truely meant for broadcasting packets.

Code listing 18: Broadcast address

IP-address: 192 168 0 2
 11000000 10101000 00000000 00000010
Broadcast: 11000000 10101000 00000000 11111111
 192 168 0 255
 +--------------------------+--------+
 Network Host

25

To be able to surf on the internet, you must know which host shares the Internet
connection. This host is called the gateway. Since it is a regular host, it has a regular IP
address (for instance 192.168.0.1).

We previously stated that every host has its own IP address. To be able to reach this
host by a name (instead of an IP address) you need a service that translates a name
(such as dev.gentoo.org) to an IP address (such as 64.5.62.82). Such a service is called
a name service. To use such a service, you must define the necessary name servers in
/etc/resolv.conf.

In some cases, your gateway also serves as nameserver. Otherwise you will have to
enter the nameservers provided by your ISP.

To summarise, you will need the following information before continuing:

Network Item Example
Your IP address 192.168.0.2
Netmask 255.255.255.0
Broadcast 192.168.0.255
Gateway 192.168.0.1
Nameserver(s) 195.130.130.5, 195.130.130.133

Using ifconfig and route

Setting up your network consists of three steps. First we assign ourselves an IP address
using ifconfig. Then we setup routing to the gateway using route. Then we finish up
by placing the nameserver IPs in /etc/resolv.conf.

To assign an IP address, you will need your IP address, broadcast address and netmask.
Then execute the following command, substituting ${IP_ADDR} with your IP address,
${BROADCAST} with your broadcast address and ${NETMASK} with your netmask:

Code listing 19: Using ifconfig

ifconfig eth0 ${IP_ADDR} broadcast ${BROADCAST} netmask ${NETMASK} up

Now set up routing using route. Substitute ${GATEWAY} with your gateway IP address:

Code listing 20: Using route

route add default gw ${GATEWAY}

Now open /etc/resolv.conf with your favorite editor (in our example, we use nano):

Code listing 21: Creating /etc/resolv.conf

nano -w /etc/resolv.conf

Now fill in your nameserver(s) using the following as a template. Make sure you
substitute ${NAMESERVER1} and ${NAMESERVER2} with the appropriate nameserver
addresses:

Code listing 22: /etc/resolv.conf template

nameserver ${NAMESERVER1}
nameserver ${NAMESERVER2}

That’s it. Now test your network by pinging some Internet server (like Google). If this
works, congratulations then. You are now ready to install Gentoo. Continue with
Preparing the Disks.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

26

27

4. Preparing the Disks
Content:

Introduction to Block Devices
Designing a Partitioning Scheme
Using fdisk on x86 or amd64 to Partition your Disk
Using fdisk on Alpha to Partition your Disk
Using fdisk on SPARC to Partition your Disk
Using mac-fdisk on PPC to Partition your Disk
Using fdisk on HPPA to Partition your Disk
Using fdisk on MIPS to Partition your Disk
Creating Filesystems
Mounting

4.a. Introduction to Block Devices

Block Devices

We’ll take a good look at disk-oriented aspects of Gentoo Linux and Linux in general,
including Linux filesystems, partitions and block devices. Then, once you’re familiar with
the ins and outs of disks and filesystems, you’ll be guided through the process of setting
up partitions and filesystems for your Gentoo Linux installation.

To begin, we’ll introduce block devices. The most famous block device is probably the
one that represents the first IDE drive in a Linux system, namely /dev/hda. If your
system uses SCSI drives, then your first hard drive would be /dev/sda.

The block devices above represent an abstract interface to the disk. User programs can
use these block devices to interact with your disk without worrying about whether your
drives are IDE, SCSI or something else. The program can simply address the storage on
the disk as a bunch of contiguous, randomly-accessible 512-byte blocks.

Partitions and Slices

Although it is theoretically possible to use a full disk to house your Linux system, this is
almost never done in practice. Instead, full disk block devices are split up in smaller,
more manageable block devices. On most systems, these are called partitions. Other
architectures use a similar technique, called slices.

Partitions

Partitions are divided in three types: primary, extended and logical.

A primary partition is a partition which has its information stored in the MBR (master boot
record). As an MBR is very small (512 bytes) only four primary partitions can be defined
(for instance, /dev/hda1 to /dev/hda4).

An extended partition is a special primary partition (meaning the extended partition must
be one of the four possible primary partitions) which contains more partitions. Such a
partition didn’t exist originally, but as four partitions were too few, it was brought to life to
extend the formatting scheme without losing backward compatibility.

A logical partition is a partition inside the extended partition. Their definitions aren’t
placed inside the MBR, but are declared inside the extended partition.

Advanced Storage

If you are booted from a Gentoo LiveCD then you have the possibility to use EVMS or
LVM2 to increase the flexibility offered by your partitioning setup. During the installation
instructions, we will focus on "regular" partitions, but it is still good to know EVMS and
LVM2 are supported as well.

4.b. Designing a Partitioning Scheme

28

Default Partitioning Scheme

If you are not interested in drawing up a partitioning scheme for your system, you can use
the (non-LVM) partitioning scheme we use throughout this book:

For x86 or amd64:

Partition Filesystem Size Description
/dev/hda1 ext2 32M Boot partition
/dev/hda2 (swap) 512M Swap partition
/dev/hda3 ext3 Rest of the disk Root partition

For ppc:

Partition NewWorld Partition OldWorld Filesystem Size Description
/dev/hda1 (Not needed) (bootstrap) 800k Apple_Bootstrap
/dev/hda2 /dev/hda1 (swap) 512M Swap partition
/dev/hda3 /dev/hda2 ext3 Rest of the disk Root partition

For Sparc:

Sun Disklabel Filesystem Size Description
/dev/hda1 ext2 32M Boot partition
/dev/hda2 (swap) 512M Swap partition
/dev/hda3 (none) Full disk Sun Disk Label (required)
/dev/hda4 ext3 Rest of the disk Root partition

If you are installing Gentoo from an existing distribution, you should first resize your
existing partitions (if you don’t have any spare room left) to be able to install Gentoo. You
can use GNU/Parted to resize your partitions.

If you are interested in knowing how big a partition (or logical volume) should be, or even
how many partitions (or volumes) you need, read on. Otherwise continue now with
partitioning your disk:

Using fdisk on x86 or amd64 to Partition your Disk
Using fdisk on Alpha to Partition your Disk
Using fdisk on SPARC to Partition your Disk
Using mac-fdisk on PPC to Partition your Disk
Using fdisk on HPPA to Partition your Disk
Using fdisk on MIPS to Partition your Disk

How Many and How Big?

The number of partitions is highly dependent on your environment. For instance, if you
have lots of users, you will most likely want to have your /home separate as it increases
security and makes backups easier. If you are installing Gentoo to perform as a
mailserver, your /var should be separate as all mails are stored inside /var. A good
choice of filesystem will then maximise your performance. Gameservers will have a
separate /opt as most gaming servers are installed there. The reason is similar for
/home: security and backups.

As you can see, it very much depends on what you want to achieve. Separate partitions
or volumes have the following advantages:

You can choose the most performant filesystem for each partition or volume
Your entire system cannot run out of free space if one defunct tool is continuously
writing files to a partition or volume
If necessary, file system checks are reduced in time, as multiple checks can be
done in parallel (although this advantage is more with multiple disks than it is with
multiple partitions)
Security can be enhanced by mounting some partitions or volumes read-only,
nosuid (setuid bits are ignored), noexec (executable bits are ignored) etc.

29

However, multiple partitions have one big disadvantage: if not configured properly, you
might result in having a system with lots of free space on one partition and none on
another.

As an example partitioning, we show you one for a 20Gb disk, used as a demonstration
laptop (containing webserver, mailserver, gnome, ...):

Code listing 1: Filesystem usage example

Filesystem Type Size Used Avail Use% Mounted on
/dev/hda5 ext3 509M 132M 351M 28% /
/dev/hda2 ext3 5.0G 3.0G 1.8G 63% /home
/dev/hda7 ext3 7.9G 6.2G 1.3G 83% /usr
/dev/hda8 ext3 1011M 483M 477M 51% /opt
/dev/hda9 ext3 2.0G 607M 1.3G 32% /var
/dev/hda1 ext2 51M 17M 31M 36% /boot
/dev/hda6 swap 516M 12M 504M 2% <not mounted>
(Unpartitioned space for future usage: 2 Gb)

/usr is rather full (83% used) here, but once all software is installed, /usr doesn’t tend to
grow that much. For /var, people might think the assigned space is too much. However,
Gentoo compiles all programs inside /var/tmp/portage, so you should have /var with
at least 1G free if you don’t want to compile big programs, up to 3G free if compiling KDE
and OpenOffice.org at the same time is no big deal for you.

Now partition your disk(s) using the instructions available for your architecture as an
example:

Using fdisk on x86 or amd64 to Partition your Disk
Using fdisk on Alpha to Partition your Disk
Using fdisk on SPARC to Partition your Disk
Using mac-fdisk on PPC to Partition your Disk
Using fdisk on HPPA to Partition your Disk
Using fdisk on MIPS to Partition your Disk

4.c. Using fdisk on x86 or amd64 to Partition your Disk

Important: Only users with x86 or amd64 based systems should read this section.

The following parts explain how to create the example partition layout described
previously, namely:

Partition Description
/dev/hda1 Boot partition
/dev/hda2 Swap partition
/dev/hda3 Root partition

Change your partition layout according to your own will.

Viewing the Current Partition Layout

fdisk is a popular and powerful tool to split your disk into partitions. Fire up fdisk on
your disk (in our example, we use /dev/hda):

Code listing 2: Starting fdisk

fdisk /dev/hda

Once in fdisk, you’ll be greeted with a prompt that looks like this:

Code listing 3: fdisk prompt

Command (m for help):

30

Type p to display your disk’s current partition configuration:

Code listing 4: An example partition configuration

Command (m for help): p

Disk /dev/hda: 240 heads, 63 sectors, 2184 cylinders
Units = cylinders of 15120 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 1 14 105808+ 83 Linux
/dev/hda2 15 49 264600 82 Linux swap
/dev/hda3 50 70 158760 83 Linux
/dev/hda4 71 2184 15981840 5 Extended
/dev/hda5 71 209 1050808+ 83 Linux
/dev/hda6 210 348 1050808+ 83 Linux
/dev/hda7 349 626 2101648+ 83 Linux
/dev/hda8 627 904 2101648+ 83 Linux
/dev/hda9 905 2184 9676768+ 83 Linux

Command (m for help):

This particular disk is configured to house seven Linux filesystems (each with a
corresponding partition listed as "Linux") as well as a swap partition (listed as "Linux
swap").

Removing all Partitions

We will first remove all existing partitions from the disk. Type d to delete a partition. For
instance, to delete an existing /dev/hda1:

Code listing 5: Deleting a partition

Command (m for help): d
Partition number (1-4): 1

The partition has been scheduled for deletion. It will no longer show up if you type p, but
it will not be erased until your changes have been saved. If you made a mistake and want
to abort without saving your changes, type q immediately and hit enter and your partition
will not be deleted.

Now, assuming that you do indeed want to wipe out all the partitions on your system,
repeatedly type p to print out a partition listing and then type d and the number of the
partition to delete it. Eventually, you’ll end up with a partition table with nothing in it:

Code listing 6: An empty partition table

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot Start End Blocks Id System

Command (m for help):

Now that the in-memory partition table is empty, we’re ready to create the partitions. We
will use a default partitioning scheme as discussed previously. Of course, don’t follow
these instructions to the letter if you don’t want the same partitioning scheme!

Creating the Boot Partition

We first create a small boot partition. Type n to create a new partition, then p to select a
primary partition, followed by 1 to select the first primary partition. When prompted for the
first cylinder, hit enter. When prompted for the last cylinder, type +32M to create a partition
32 Mbyte in size:

Code listing 7: Creating the boot partition

31

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-3876, default 1): (Hit Enter)
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-3876, default 3876): +32M

Now, when you type p, you should see the following partition printout:

Code listing 8: Created boot partition

Command (m for help): p

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot Start End Blocks Id System
/dev/hda1 1 14 105808+ 83 Linux

We need to make this partition bootable. Type a to toggle the bootable flag on this
partition. If you press p again, you will notice that an * is placed in the "Boot" column.

Creating the Swap Partition

Let’s now create the swap partition. To do this, type n to create a new partition, then p to
tell fdisk that you want a primary partition. Then type 2 to create the second primary
partition, /dev/hda2 in our case. When prompted for the first cylinder, hit enter. When
prompted for the last cylinder, type +512M to create a partition 512MB in size. After you’ve
done this, type t to set the partition type, 2 to select the partition you just created and
then type in 82 to set the partition type to "Linux Swap". After completing these steps,
typing p should display a partition table that looks similar to this:

Code listing 9: Partition listing after creating a swap partition

Command (m for help): p

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 14 105808+ 83 Linux
/dev/hda2 15 81 506520 82 Linux swap

Creating the Root Partition

Finally, let’s create the root partition. To do this, type n to create a new partition, then p to
tell fdisk that you want a primary partition. Then type 3 to create the third primary
partition, /dev/hda3 in our case. When prompted for the first cylinder, hit enter. When
prompted for the last cylinder, hit enter to create a partition that takes up the rest of the
remaining space on your disk. After completing these steps, typing p should display a
partition table that looks similar to this:

Code listing 10: Partition listing after creating the root partition

Command (m for help): p

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 14 105808+ 83 Linux
/dev/hda2 15 81 506520 82 Linux swap
/dev/hda3 82 3876 28690200 83 Linux

Saving the Partition Layout

32

To save the partition layout and exit fdisk, type w.

Code listing 11: Save and exit fdisk

Command (m for help): w

Now that your partitions are created, you can now continue with Creating Filesystems.

4.d. Using fdisk on Alpha to Partition your Disk

Important: Only users with Alpha based systems should read this section.

The following parts explain how to create the example slice layout described previously,
namely:

Slice Description
/dev/sdaa Swap slice
/dev/sdab Root slice
/dev/sdac Full disk (required)

Change your slice layout according to your own will.

Identifying Available Disks

To figure out what disks you have running, use the following commands:

Code listing 12: Identifying available disks

(For IDE disks) # dmesg | grep ’drive$’
(For SCSI disks) # dmesg | grep ’scsi’

From this output you should be able to see what disks were detected and their respective
/dev entry. In the following parts we assume that the disk is a SCSI disk on /dev/sda.

Now fire up fdisk:

Code listing 13: Starting fdisk

fdisk /dev/sda

Deleting All Slices

We start with deleting all slices except the ’c’-slice. The following shows how to delete a
slice (in the example we use ’a’). Repeat the process to delete all other slices (again,
except the ’c’-slice).

Use p to view all existing slices. d is used to delete a slice.

33

Code listing 14: Deleting a slice

BSD disklabel command (m for help): p

8 partitions:
start end size fstype [fsize bsize cpg]
 a: 1 235* 234* 4.2BSD 1024 8192 16
 b: 235* 469* 234* swap
 c: 1 5290* 5289* unused 0 0
 d: 469* 2076* 1607* unused 0 0
 e: 2076* 3683* 1607* unused 0 0
 f: 3683* 5290* 1607* unused 0 0
 g: 469* 1749* 1280 4.2BSD 1024 8192 16
 h: 1749* 5290* 3541* unused 0 0

BSD disklabel command (m for help): d
Partition (a-h): a

After repeating this process for all slices, a listing should show you something similar to
this:

Code listing 15: Viewing an empty scheme

BSD disklabel command (m for help): p

3 partitions:
start end size fstype [fsize bsize cpg]
 c: 1 5290* 5289* unused 0 0

Creating the Swap Slice

On Alpha based systems you don’t need a separate boot partition. However, the first
cylinder cannot be used as the aboot image will be placed there.

We will create a swap slice starting at the third cylinder, with a total size of 1 Gbyte. Use
n to create a new slice. After creating the slice, we will change its type to 1, meaning
swap.

Code listing 16: Creating the swap slice

BSD disklabel command (m for help): n
Partition (a-p): a
First cylinder (1-5290, default 1): 3
Last cylinder or +size or +sizeM or +sizeK (3-5290, default 5290): +1024M

BSD disklabel command (m for help): t
Partition (a-c): a
Hex code (type L to list codes): 1

After these steps you should see a layout similar to the following:

Code listing 17: Slice layout after creating the swap slice

BSD disklabel command (m for help): p

3 partitions:
start end size fstype [fsize bsize cpg]
 a: 3 1003 1001 swap
 c: 1 5290* 5289* unused 0 0

Create the Root Slice

We will now create the root slice, starting from the first cylinder after the swap slice. Use
the p command to view where the swap slice ends. In our example, this is at 1003,
making the root partition start at 1004.

Another problem is that there is currently a bug in fdisk making it think the number of
available cylinders is one above the real number of cylinders. In other words, when you
are asked for the last cylinder, decrease the cylinder number (in this example: 5290) with
one.

When the partition is created, we change the type to 8, for ext2.

34

Code listing 18: Creating the root slice

D disklabel command (m for help): n
Partition (a-p): b
First cylinder (1-5290, default 1): 1004
Last cylinder or +size or +sizeM or +sizeK (1004-5290, default 5290): 5289

BSD disklabel command (m for help): t
Partition (a-c): b
Hex code (type L to list codes): 8

Your slice layout should now be similar to this:

Code listing 19: Viewing the slice layout

BSD disklabel command (m for help): p

3 partitions:
start end size fstype [fsize bsize cpg]
 a: 3 1003 1001 swap
 b: 1004 5289 4286 ext2
 c: 1 5290* 5289* unused 0 0

Save the Slice Layout and Exit

Save fdisk by typing w. This will also save your slice layout.

Code listing 20: Save and exit fdisk

Command (m for help): w

Now that your slices are created, you can now continue with Creating Filesystems.

4.e. Using fdisk on SPARC to Partition your Disk

Important: Only users with SPARC based systems should read this section.

The following parts explain how to create the example partition layout described
previously, namely:

Partition Description
/dev/hda1 Boot partition
/dev/hda2 Swap partition
/dev/hda3 Sun Disk Label (required)
/dev/hda4 Root partition

Change your partition layout according to your own will.

Firing up fdisk

Start fdisk with your disk as argument:

Code listing 21: Starting fdisk

fdisk /dev/hda

You should be greeted with the fdisk prompt:

Code listing 22: The fdisk prompt

Command (m for help):

To view the available partitions, type in p:

35

Code listing 23: Listing available partitions

Command (m for help): p

Disk /dev/hda (Sun disk label): 240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 bytes

Device Flag Start End Blocks Id System
/dev/hda1 * 1 14 105808+ 83 Linux
/dev/hda2 15 81 506520 82 Linux swap
/dev/hda3 0 3876 29302528 5 Whole Disk
/dev/hda4 82 3876 28690200 83 Linux

Note the Sun disk label in the output. If this is missing, the disk is using the
DOS-partitioning, not the Sun partitioning. In this case, use s to ensure that the disk has
a sun partition table.

Deleting Existing Partitions

It’s time to delete any existing partitions. To do this, type d and hit Enter. You will then be
prompted for the partition number you would like to delete. To delete a pre-existing
/dev/hda1, you would type:

Code listing 24: Deleting a partition

Command (m for help): d
Partition number (1-4): 1

Assuming you want to remove all existing partitions, press p to view the available
partitions, and d to delete those one by one. If you feel like you made an error, press q
immediately -- fdisk doesn’t immediately change the partitions but keeps the changes in
memory. Only when you press w are the partitions saved.

After deleting all partitions, you should have a partition layout similar to the following:

Code listing 25: View an empty partition scheme

Command (m for help): p

Disk /dev/hda (Sun disk label): 240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 bytes

Device Flag Start End Blocks Id System

Create the Sun Disk Label

Now that the in-memory partition table is empty, we’re ready to create the Sun Disk Label
partition. To do this, type n to create a new partition, then type 3 to create the partition.
When prompted for the first cylinder, hit enter. When prompted for the last cylinder, hit
enter. After you’ve done this, type t to set the partition type, and then type in 5 to set the
partition type to "Whole disk".

Code listing 26: Steps to create a Sun Disk Label

Command (m for help): n
Partition number (1-4): 3
First cylinder (1-3876, default 0): 0
Last cylinder or +size or +sizeM or +sizeK (1-3876, default 3876): (Press Enter)
Using default value 3876

Command (m for help): t
Partition number (1-8): 3
Hex code (type L to list codes): 5

After completing these steps, typing p should display a partition table that looks similar to
this:

Code listing 27: View the partition layout

36

Command (m for help): p

Disk /dev/hda (Sun disk lable): 240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 bytes

Device Flag Start End Blocks Id System
/dev/hda3 0 3876 29302528 5 Whole disk

Creating the Boot Partition

We’re ready to create a boot partition. To do this, type n to create a new partition, then
type 1 to create the partition. When prompted for the first cylinder, hit enter. When
prompted for the last cylinder, type +32M to create a partition 32MB in size. Make sure that
the entire boot partition must be contained entirely within the first 2Gb of the disk. You
can see output from these steps below:

Code listing 28: Creating a boot partition

Command (m for help): n
Partition number (1-4): 1
First cylinder (1-3876, default 1): (Press Enter)
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-3876, default 3876): +32M

Now, when you type p, you should see the following partition printout:

Code listing 29: Listing the partition layout

Command (m for help): p

Disk /dev/hda (Sun disk label): 240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 bytes

Device Flag Start End Blocks Id System
/dev/hda1 1 14 105808+ 83 Linux
/dev/hda3 0 3876 29302528 5 Whole disk

Creating a swap partition

Next, let’s create the swap partition. To do this, type n to create a new partition, then 2 to
create the second partition, /dev/hda2 in our case. When prompted for the first cylinder,
hit enter. When prompted for the last cylinder, type +512M to create a partition 512MB in
size. After you’ve done this, type t to set the partition type, and then type in 82 to set the
partition type to "Linux Swap". After completing these steps, typing p should display a
partition table that looks similar to this:

Code listing 30: Listing of available partitions

Command (m for help): p

Disk /dev/hda (Sun disk label): 240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 bytes

Device Flag Start End Blocks Id System
/dev/hda1 1 14 105808+ 83 Linux
/dev/hda2 15 81 506520 82 Linux swap
/dev/hda3 0 3876 29302528 5 Whole disk

Creating the root partition

Finally, let’s create the root partition. To do this, type n to create a new partition, then
type 4 to create the third partition, /dev/hda4 in our case. When prompted for the first
cylinder, hit enter. When prompted for the last cylinder, hit enter to create a partition that
takes up the rest of the remaining space on your disk. After completing these steps,
typing p should display a partition table that looks similar to this:

Code listing 31: Listing complete partition table

37

Command (m for help): p

Disk /dev/hda (Sun disk label): 240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 bytes

Device Flag Start End Blocks Id System
/dev/hda1 1 14 105808+ 83 Linux
/dev/hda2 15 81 506520 82 Linux swap
/dev/hda3 0 3876 29302528 5 Whole disk
/dev/hda4 82 3876 28690200 83 Linux

Save and Exit

To save your partition layout and exit fdisk, type w:

Code listing 32: Save and exit fdisk

Command (m for help): w

Now that your partitions are created, you can now continue with Creating Filesystems.

4.f. Using mac-fdisk on PPC to Partition your Disk

At this point, create your partitions using mac-fdisk:

Code listing 33: Starting mac-fdisk

mac-fdisk /dev/hda

First delete the partitions you have cleared previously to make room for your Linux
partitions. Use d in mac-fdisk to delete those partition(s). It will ask for the partition
number to delete.

Second, create an Apple_Bootstrap partition by using b. It will ask for what block you
want to start. If you previously selected 3 as partition number, enter 3p.

Now create a swap partition by pressing c. Again mac-fdisk will ask for what block you
want to start this partition from. As we used 3 before to create the Apple_Bootstrap
partition, you now have to enter 4p. When you’re asked for the size, enter 512M (or
whatever size you want -- 512 is recommended though). When asked for a name, enter
swap (mandatory).

To create the root partition, enter c, followed by 5p to select from what block the root
partition should start. When asked for the size, enter 5p again. mac-fdisk will interprete
this as "Use all available space". When asked for the name, enter root (mandatory).

To finish up, write the partition to the disk using w and q to quit mac-fdisk.

Now that your partitions are created, you can now continue with Creating Filesystems.

4.g. Using fdisk on HPPA to Partition your Disk

Use fdisk to create the partitions you want:

Code listing 34: Partitioning the disk

fdisk /dev/sda

PALO needs a special partition to work. You have to create a partition of at least 16Mb at
the beginning of your disk. The partition type must be of type f0 (Linux/PA-RISC boot).

38

Important: If you ignore this and continue without a special PALO partition, your system will stop loving you
and fail to start.

Also, if your disk is larger than 2Gb, make sure that the boot partition is in the first 2Gb of
your disk. PALO is unable to read a kernel after the 2Gb limit.

Now that your partitions are created, you can now continue with Creating Filesystems.

4.h. Using fdisk on MIPS to Partition your Disk

Creating an SGI Disk Label

All disks in an SGI System require an SGI Disk Label, which serves a similar function as
Sun & MS-DOS disklabels -- It stores information about the disk partitions. Creating a
new SGI Disk Label will create two special partitions on the disk:

SGI Volume Header (9th partition): This partition is important. It is where the kernel
images will go. To store kernel images, you will utilize the tool known as dvhtool to
copy kernel images to this partition. You will then be able to boot kernels from this
partition via the SGI PROM Monitor.
SGI Volume (11th partition): This partition is similar in purpose to the Sun
Disklabel’s third partition of "Whole Disk". This partition spans the entire disk, and
should be left untouched. It serves no special purpose other than to assist the
PROM in some undocumented fashion (or it is used by IRIX in some way).

Warning: The SGI Volume Header must begin at cylinder 0. Failure to do so means you won’t be able to boot
from the disk.

The following is an example excerpt from an fdisk session. Read and tailor it to your
needs...

39

Code listing 35: Creating an SGI Disklabel

fdisk /dev/sda

Command (m for help): x

Expert command (m for help): m
Command action
 b move beginning of data in a partition
 c change number of cylinders
 d print the raw data in the partition table
 e list extended partitions
 f fix partition order
 g create an IRIX (SGI) partition table
 h change number of heads
 m print this menu
 p print the partition table
 q quit without saving changes
 r return to main menu
 s change number of sectors/track
 v verify the partition table
 w write table to disk and exit

Expert command (m for help): g
Building a new SGI disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content will be unrecoverably lost.

Expert command (m for help): r

Command (m for help): p

Disk /dev/sda (SGI disk label): 64 heads, 32 sectors, 17482 cylinders
Units = cylinders of 2048 * 512 bytes

----- partitions -----
Pt# Device Info Start End Sectors Id System
 9: /dev/sda1 0 4 10240 0 SGI volhdr
11: /dev/sda2 0 17481 35803136 6 SGI volume
----- Bootinfo -----
Bootfile: /unix
----- Directory Entries -----

Command (m for help):

Note: If your disk already has an existing SGI Disklabel, then fdisk will not allow the creation of a new label.
There are two ways around this. One is to create a Sun or MS-DOS disklabel, write the changes to disk, and
restart fdisk. The second is to overwrite the partition table with null data via the following command: dd
if=/dev/zero of=/dev/sda bs=512 count=1.

Getting the SGI Volume Header to just the right size

Now that an SGI Disklabel is created, partitions may now be defined. In the above
example, there are already two partitions defined for you. These are the special partitions
mentioned above and should not normally be altered. However, for installing Gentoo,
we’ll need to load multiple kernel images directly into the volume header, as there is no
supported SGI Bootloader available in Portage yet. The volume header itself can hold up
to eight images of any size, with each image allowed eight-character names.

The process of making the volume header larger isn’t exactly straight-forward -- there’s a
bit of a trick to it. One cannot simply delete and re-add the volume header due to odd
fdisk behavior. In the example provided below, we’ll create a 50MB Volume header in
conjunction with a 50MB /boot partition. The actual layout of your disk may vary, but this
is for illustrative purposes only.

40

Code listing 36: Resizing the SGI Volume Header correctly

Command (m for help): n
Partition number (1-16): 1
First cylinder (5-8682, default 5): 51
 Last cylinder (51-8682, default 8682): 101
(Notice how fdisk only allows Partition #1 to be re-created starting at a minimum of cylinder 5)
(Had you attempted to delete & re-create the SGI Volume Header this way, this is the same issue
 you would have encountered.)
(In our example, we want /boot to be 50MB, so we start it at cylinder 51 (the Volume Header needs to
 start at cylinder 0, remember?), and set its ending cylinder to 101, which will roughly be 50MB (+/- 1-5MB))

Command (m for help): d
Partition number (1-16): 9
(Delete Partition #9 (SGI Volume Header))

Command (m for help): n
Partition number (1-16): 9
First cylinder (0-50, default 0): 0
 Last cylinder (0-50, default 50): 50
(Re-Create Partition #9, ending just before Partition #1)

Final partition layout

Once this is done, you are safe to create the rest of your partitions as you see fit. After all
your partitions are laid out, make sure you set the partition ID of your swap partition to 82,
which is Linux Swap. By default, it will be 83, Linux Native.

Now that your partitions are created, you can now continue with Creating Filesystems.

4.i. Creating Filesystems

Introduction

Now that your partitions are created, it is time to place a filesystem on them. If you don’t
care about what filesystem to choose and are happy with what we use as default in this
handbook, continue with Applying a Filesystem to a Partition. Otherwise read on to learn
about the available filesystems...

Filesystems?

Several filesystems are available. Some of them are found stable on all architectures,
others only on a few. The following table lists the available filesystems and the
architectures they are known to work on. If an architecture is contained within "(...)" then
the filesystem should work but is untested.

Filesystem Journaled Architectures
ext2 no All architectures
ext3 yes All architectures
reiserfs yes x86, hppa, alpha, (mips), (pcc), (amd64)
xfs yes x86, alpha, amd64, (ppc)
jfs yes x86, alpha, (mips), (amd64)

ext2 is the tried and true Linux filesystem but doesn’t have metadata journaling, which
means that routine ext2 filesystem checks at startup time can be quite time-consuming.
There is now quite a selection of newer-generation journaled filesystems that can be
checked for consistency very quickly and are thus generally preferred over their
non-journaled counterparts. Journaled filesystems prevent long delays when you boot
your system and your filesystem happens to be in an inconsistent state.

ext3 is the journaled version of the ext2 filesystem, providing metadata journaling for fast
recovery in addition to other enhanced journaling modes like full data and ordered data
journaling. ext3 is a very good and reliable filesystem. It offers generally decent
performance under most conditions. Because it does not extensively employ the use of
"trees" in its internal design, it doesn’t scale very well, meaning that it is not an ideal
choice for very large filesystems, or situations where you will be handling very large files
or large quantities of files in a single directory. But when used within its design
parameters, ext3 is an excellent filesystem.

41

ReiserFS is a B*-tree based filesystem that has very good overall performance and
greatly outperforms both ext2 and ext3 when dealing with small files (files less than 4k),
often by a factor of 10x-15x. ReiserFS also scales extremely well and has metadata
journaling. As of kernel 2.4.18+, ReiserFS is solid and usable as both general-purpose
filesystem and for extreme cases such as the creation of large filesystems, the use of
many small files, very large files and directories containing tens of thousands of files.

XFS is a filesystem with metadata journaling that is fully supported under Gentoo Linux’s
xfs-sources kernel. It comes with a robust feature-set and is optimized for scalability. We
only recommend using this filesystem on Linux systems with high-end SCSI and/or fibre
channel storage and a uninterruptible power supply. Because XFS aggressively caches
in-transit data in RAM, improperly designed programs (those that don’t take proper
precautions when writing files to disk and there are quite a few of them) can lose a good
deal of data if the system goes down unexpectedly.

JFS is IBM’s high-performance journaling filesystem. It has recently become
production-ready and there hasn’t been a sufficient track record to comment positively
nor negatively on its general stability at this point.

Applying a Filesystem to a Partition

To create a filesystem on a partition or volume, there are tools available for each possible
filesystem:

Filesystem Creation Command
ext2 mke2fs

ext3 mke2fs -j

reiserfs mkreiserfs

xfs mkfs.xfs

jfs mkfs.jfs

For instance, to have the boot partition (/dev/hda1 in our example) in ext2 and the root
partition (/dev/hda3 in our example) in ext3 (as in our example), you would use:

Code listing 37: Applying a filesystem on a partition

mke2fs /dev/hda1
mke2fs -j /dev/hda3

Now create the filesystems on your newly created partitions (or logical volumes).

Activating the Swap Partition

mkswap is the command that is used to initialize swap partitions:

Code listing 38: Creating a Swap signature

mkswap /dev/hda2

To activate the swap partition, use swapon:

Note: Knoppix users who already have a swap partition on their system may skip this as Knoppix
automatically activates existing swap partitions.

Code listing 39: Activating the swap partition

swapon /dev/hda2

Create and activate the swap now.

4.j. Mounting

Now that your partitions are initialized and are housing a filesystem, it is time to mount

42

those partitions. Use the mount command. Don’t forget to create the necessary mount
directories:

Code listing 40: Mounting partitions

mount /dev/hda3 /mnt/gentoo
mkdir /mnt/gentoo/boot
mount /dev/hda1 /mnt/gentoo/boot

Note: If you want your /tmp to reside on a separate partition, be sure to change its permissions after
mounting: chmod 1777 /mnt/gentoo/tmp. This also holds for /var/tmp.

We also need to mount the proc filesystem (a virtual interface with the kernel) on /proc.
We first create the /mnt/gentoo/proc mountpoint:

Code listing 41: Creating the /mnt/gentoo/proc mountpoint

mkdir /mnt/gentoo/proc

If you are installing Gentoo from a LiveCD, you just need to mount proc:

Code listing 42: Mounting proc

mount -t proc none /mnt/gentoo/proc

If you are not installing Gentoo from a Gentoo LiveCD, you need to bindmount /proc:

Code listing 43: Bind-mounting proc

mount -o bind /proc /mnt/gentoo/proc

Now continue with Installing the Gentoo Installation Files.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

43

44

5. Installing the Gentoo Installation Files
Content:

Installing a Stage Tarball
Default: Using a Stage from the Internet
Alternative: Using a Stage from the LiveCD
Installing Portage
Configuring the Compile Options

5.a. Installing a Stage Tarball

Making your Choice

The next step you need to perform is to install the stage tarball of your choice onto your
system. You have the option of downloading the required tarball from the Internet or, if
you are booted from one of the Gentoo LiveCDs, copy it over from the CD itself.

Default: Using a Stage from the Internet
Alternative: Using a Stage from the LiveCD

5.b. Default: Using a Stage from the Internet

Downloading the Stage Tarball

Go to the Gentoo mountpoint at which you mounted your filesystems (most likely
/mnt/gentoo):

Code listing 1: Going to the Gentoo mountpoint

cd /mnt/gentoo

Depending on your installation medium, you have a couple of tools available to download
a stage. If you have lynx available, then you can immediately surf to the Gentoo
mirrorlist and choose a mirror close to you. Then pick the releases/ directory, followed
by the Gentoo version (2004.0) and your architecture (for instance x86/) to finish up with
the stages/ directory. There you should see all available stage files for your architecture.
Select one and press D to download. When you’re finished, press Q to quit the browser.

Note: The Gentoo Hardened stages (for the x86 architecture) are inside the subdirectory hardened/stages/.

Code listing 2: Surfing to the mirror listing with lynx

lynx http://www.gentoo.org/main/en/mirrors.xml

If you do not have lynx, you should have links2 at your disposal. links2 is more
powerful than lynx, but has some drawbacks. One of them is that it doesn’t listen to the
proxy variables we have declared previously. If you need to setup a proxy, use links2
-http-proxy proxy.server.com:8080. From there on, you should follow the same
steps as with lynx as they are equivalent.

Code listing 3: Surfing to the mirror listing with links2

(Without proxy) # links2 http://www.gentoo.org/main/en/mirrors.xml
(With proxy) # links2 -http-proxy proxy.server.com:8080 http://www.gentoo.org/main/en/mirrors.xml

If you want to check the integrity of the downloaded stage tarball, use md5sum and
compare the output with the MD5 checksum provided on the mirror.

Code listing 4: Checking integrity of a stage tarball

45

md5sum stage1-x86-20030910.tar.bz2
6cda1cc745ba882731ac07fbae0dd973 stage1-x86-20030910.tar.bz2

Unpacking the Stage Tarball

Now unpack your downloaded stage onto your system. We use GNU’s tar to proceed as
it is the easiest method:

Code listing 5: Unpacking the stage

tar -xvjpf stage?-*.tar.bz2

Make sure that you use the same options (-xvjpf). The x stands for Extract, the v for
Verbose (okay, yes, this is optional), the j for Decompress with bzip2, the p for Preserve
permissions and the f to denote that we want to extract a file, not standard input.

Now that the stage is installed, continue with Installing Portage.

5.c. Alternative: Using a Stage from the LiveCD

Extracting the Stage Tarball

The stages on the CD reside in the /mnt/cdrom/stages directory. To see a listing of
available stages, use ls:

Code listing 6: List all available stages

ls /mnt/cdrom/stages

If the system replies with an error, you may need to mount the CD-ROM first:

Code listing 7: Mounting the CD-ROM

ls /mnt/cdrom/stages
ls: /mnt/cdrom/stages: No such file or directory
mount /dev/cdroms/cdrom0 /mnt/cdrom
ls /mnt/cdrom/stages

Now go into your Gentoo mountpoint (usually /mnt/gentoo):

Code listing 8: Changing directory to /mnt/gentoo

cd /mnt/gentoo

We will now extract the stage tarball of your choice. We will do this with the GNU tar
tool. Make sure you use the same options (-xvjpf)! In the next example, we extract the
stage tarball stage3-20031011.tar.bz2. Be sure to substitute the tarball filename with
your stage.

Code listing 9: Extracting the stage tarball

tar -xvjpf /mnt/cdrom/stages/stage3-20031011.tar.bz2

Now that the stage is installed, continue with Installing Portage.

5.d. Installing Portage

Network or No Network?

If you don’t have a working network connection, you have to install a portage snapshot
provided by one of our LiveCDs. If you want to use prebuilt packages later on to speed

46

up the installation, you must use a portage snapshot, either from the LiveCD or from one
of our mirrors. Other users will download a fully updated Portage tree using emerge later
on.

Continue with the appropriate part:

Installing a Portage Snapshot and Source Code from LiveCD (for networkless
installations or GRP installations)
Installing a Portage Snapshot from a Gentoo Mirror (for GRP installations)
Configuring the Compile Options (all other installation methods)

Installing a Portage Snapshot and Source Code from LiveCD

There is a Portage snapshot available on some LiveCDs. Since you are reading this, we
can safely assume you are using such a LiveCD. To install this snapshot, take a look
inside /mnt/cdrom/snapshots/ to see what snapshot we have available:

Code listing 10: Checking the /mnt/cdrom/snapshots content

ls /mnt/cdrom/snapshots

Now extract the snapshot using the following construct. Again, make sure you use the
correct options to tar. Also, the -C is with a capital C, not c. In the next example we use
portage-20031011.tar.bz2 as the snapshot filename. Be sure to substitute with your
snapshot.

Code listing 11: Extracting a Portage snapshot

tar -xvjf /mnt/cdrom/snapshots/portage-20031011.tar.bz2 -C /mnt/gentoo/usr

You also need to copy over all source code from the CD:

Code listing 12: Copy over source code

mkdir /mnt/gentoo/usr/portage/distfiles
cp /mnt/cdrom/distfiles/* /mnt/gentoo/usr/portage/distfiles/

Now that your Portage snapshot is installed, continue with Configuring the Compile
Options.

Installing a Portage Snapshot from a Gentoo Mirror

In order to succesfully use GRP, you need to download a matching Portage snapshot. Go
to one of our mirrors with lynx (or links2) and download the Portage snapshot available
from releases/2004.0/your_architecture/snapshots. Be sure you are located inside
/mnt/gentoo so that the downloaded snapshot is saved on your disk.

Code listing 13: Downloading a Portage Snapshot

cd /mnt/gentoo
lynx http://www.gentoo.org/main/en/mirrors.xml

Now extract the snapshot using the following construct. Again, make sure you use the
correct options to tar. Also, the -C is with a capital C, not c. In the next example we use
portage-20031011.tar.bz2 as the snapshot filename. Be sure to substitute with your
snapshot.

Code listing 14: Extracting a Portage snapshot

tar -xvjf /mnt/gentoo/portage-20031011.tar.bz2 -C /mnt/gentoo/usr

Now that your Portage snapshot is installed, continue with Configuring the Compile
Options.

47

5.e. Configuring the Compile Options

Introduction

To optimize Gentoo, you can set a couple of variables which impact Portage behaviour.
All those variables can be set as environment variables (using export) but that isn’t
permanent. To keep your settings, Portage provides you with /etc/make.conf, a
configuration file for Portage. It is this file we will edit now.

Note: A commented listing of all possible variables can be found in /mnt/gentoo/etc/make.conf.example.
For a successful Gentoo installation you’ll only need to set the variables which are mentioned beneath.

Fire up your favorite editor (in this guide we use nano) so we can alter the optimization
variables we will discuss hereafter.

Code listing 15: Opening /etc/make.conf

nano -w /mnt/gentoo/etc/make.conf

As you probably notice now, the make.conf.example file is structured in a generic way:
commented lines start with "#", other lines define variables using the
VARIABLE="content" syntax. Several of those variables are discussed next.

CHOST

Warning: Although it might be tempting for non-stage1 users, they should not change the CHOST setting in
make.conf. Doing so might render their system unusable. Again: only change this variable if you use a
stage1 installation.

The CHOST variable defines what architecture gcc has to compile programs for. The
possibilities are:

Architecture Subarchitecture CHOST Setting
x86 i386 i386-pc-linux-gnu
x86 i486 i486-pc-linux-gnu
x86 i586 i586-pc-linux-gnu
x86 i686 and above (incl. athlon) i686-pc-linux-gnu
alpha alpha-unknown-linux-gnu
ppc powerpc-unknown-linux-gnu
sparc sparc-unknown-linux-gnu
hppa (generic) hppa-unknown-linux-gnu
hppa pa7000 hppa1.1-unknown-linux-gnu
hppa pa8000 and above hppa2.0-unknown-linux-gnu
mips mips-unknown-linux-gnu
amd64 x86_64-pc-linux-gnu

CFLAGS and CXXFLAGS

The CFLAGS and CXXFLAGS variables define the optimization flags for the gcc C and C++
compiler respectively. Although we define those generally here, you will only have
maximum performance if you optimize these flags for each program separately. The
reason for this is because every program is different.

In make.conf you should define the optimization flags you think will make your system
the most responsive generally. Don’t place experimental settings in this variable; too
much optimization can make programs behave bad (crash, or even worse, malfunction).

We will not explain all possible optimization options. If you want to know them all, read
the GNU Online Manual(s) or the gcc info page (info gcc -- only works on a working
Linux system). The make.conf.example file itself also contains lots of examples and
information; don’t forget to read it too.

48

A first setting is the -march= flag, which specifies the name of the target architecture.
Possible options are described in the make.conf.example file (as comments). For
instance, for the x86 Athlon XP architecture:

Code listing 16: The GCC march setting

-march=athlon-xp

A second one is the -O flag, which specifies the gcc optimization class flag. Possible
classes are s (for size-optimized), 0 (for no optimizations), 1, 2 or 3 for more
speed-optimization flags (every class has the same flags as the one before, plus some
extras). For instance, for a class-2 optimization:

Code listing 17: The GCC O setting

-O2

Other popular optimization flags are -pipe (use pipes rather than temporary files for
communication between the various stages of compilation) and -fomit-frame-pointer
(which doesn’t keep the frame pointer in a register for functions that don’t need one).

When you define the CFLAGS and CXXFLAGS, you should combine several optimization
flags, like in the following example:

Code listing 18: Defining the CFLAGS and CXXFLAGS variable

CFLAGS="-march=athlon-xp -pipe -O2"
CXXFLAGS="${CFLAGS}" # Use the same settings for both variables

MAKEOPTS

With MAKEOPTS you define how many parallel compilations should occur when you install
a package. The suggested number is the number of CPUs in your system plus one.

Code listing 19: MAKEOPTS for a regular, 1-CPU system

MAKEOPTS="-j2"

Ready, Set, Go!

Update your /mnt/gentoo/etc/make.conf to your own will and save. You are now
ready to continue with Installing the Gentoo Base System.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

49

50

6. Installing the Gentoo Base System
Content:

Chrooting
Differences between Stage1, Stage2 and Stage3
Progressing from Stage1 to Stage2
Progressing from Stage2 to Stage3
Optional: Preparing for GRP

6.a. Chrooting

Optional: Selecting Mirrors

If you have booted from a Gentoo LiveCD, you are able to use mirrorselect to update
/etc/make.conf so fast mirrors are used for both Portage and source code (of course in
case you have a working network connection):

Code listing 1: Selecting fast mirrors

mirrorselect -a -s4 -o >> /mnt/gentoo/etc/make.conf

If for some reason mirrorselect fails, don’t panic. This step is completely optional. If
mirrorselect fails, the default values suffice.

Copy DNS Info

One thing still remains to be done before we enter the new environment and that is
copying over the DNS information in /etc/resolv.conf. You need to do this to ensure
that networking still works even after entering the new environment. /etc/resolv.conf
contains the nameservers for your network.

Code listing 2: Copy over DNS information

cp /etc/resolv.conf /mnt/gentoo/etc/resolv.conf

Optional: Mounting /dev

Knoppix users (and people that install Gentoo from an installation medium that does not
use DevFS) should now bind-mount the /dev structure. If you use one of our LiveCDs
you can skip this step.

Code listing 3: Bind-mounting /dev

mkdir /mnt/gentoo/dev
mount -o bind /dev /mnt/gentoo/dev

Entering the new Environment

Now that all partitions are initialized and the base environment installed, it is time to enter
our new installation environment by chrooting into it. This means that we change from the
current installation environment (LiveCD or other installation medium) to your installation
system (namely the initialized partitions).

This chrooting is done in three steps. First we will change the root from / (on the
installation medium) to /mnt/gentoo (on your partitions) using chroot. Then we will
create a new environment using env-update, which essentially creates environment
variables. Finally, we load those variables into memory using source.

Code listing 4: Chrooting into the new environment

51

chroot /mnt/gentoo /bin/bash
env-update
Regenerating /etc/ld.so.cache...
source /etc/profile

Congratulations! You are now inside your own Gentoo Linux environment. Of course it is
far from finished, which is why the installation still has some sections left :-)

Optional: Updating Portage

If you haven’t installed a Portage snapshot in the previous chapter, you must download a
recent Portage tree from the Internet. emerge sync does this for you. Other users should
skip this and continue with Configuring the USE variable.

Code listing 5: Updating Portage

emerge sync
(In case you are unable to use rsync, use "emerge-webrsync" which
downloads and installs a portage snapshot for you)
emerge-webrsync

If you are warned that a new Portage version is available and that you should update
Portage, you can safely ignore it. Portage will be updated for you later on during the
installation.

Configuring the USE variable

USE is one of the most powerful variables Gentoo provides to its users. Several programs
can be compiled with or without optional support for certain items. For instance, some
programs can be compiled with gtk-support, or with qt-support. Others can be compiled
with or without SSL support. Some programs can even be compiled with framebuffer
support (svgalib) instead of X11 support (X-server).

Most distributions compile their packages with support for as much as possible,
increasing the size of the programs and startup time, not to mention an enormous
amount of dependencies. With Gentoo you can define what options a package should be
compiled with. This is where USE comes into play.

In the USE variable you define keywords which are mapped onto compile-options. For
instance, ssl will compile ssl-support in the programs that support it. -X will remove
X-server support (note the minus sign in front). gnome gtk -kde -qt will compile your
programs with gnome (and gtk) support, and not with kde (and qt) support, making your
system fully tweaked for GNOME.

The default USE settings are placed in /etc/make.profile/make.defaults. What you
place in /etc/make.conf is calculated against these defaults settings. If you add
something to the USE setting, it is added to the default list. If you remove something from
the USE setting (by placing a minus sign in front of it) it is removed from the default list (if
it was in the default list at all). Never alter anything inside the /etc/make.profile
directory; it gets overwritten when you update Portage!

A full description on USE can be found in the second part of the Gentoo Handbook,
Chapter 1: USE flags. A full description on the available USE flags can be found on your
system in /usr/portage/profiles/use.desc.

Code listing 6: Viewing available USE flags

less /usr/portage/profiles/use.desc

As an example we show a USE setting for a KDE-based system with DVD, ALSA and CD
Recording support:

52

Code listing 7: Opening /etc/make.conf

nano -w /etc/make.conf

Code listing 8: USE setting

USE="-gtk -gnome qt kde dvd alsa cdr"

Optional: Using Distributed Compiling

If you are interested in using a collection of systems to help in compiling your system you
might want to take a look at our DistCC Guide. By using distcc you can use the
processing power of several systems to aid you with the installation.

6.b. Differences between Stage1, Stage2 and Stage3

Now take a seat and think of your previous steps. We asked you to select a stage1,
stage2 or stage3 and warned you that your choice is important for further installation
steps. Well, this is the first place where your choice defines the further steps.

If you chose stage1, then you have to follow both steps in this chapter (starting with
Progressing from Stage1 to Stage2)
If you chose stage2 you only can skip the first step and immediately start with the
second one (Progressing from Stage2 to Stage3)
If you chose stage3 (either with or without GRP) then you can skip both steps. If
you want to use GRP, continue with Optional: Preparing for GRP. Otherwise
continue with Configuring the Kernel

6.c. Progressing from Stage1 to Stage2

Introduction to Bootstrapping

So, you want to compile everything from scratch? Okay then :-)

In this step, we will bootstrap your Gentoo system. This takes a long time, but the result
is a system that has been optimized from the ground up for your specific machine and
needs.

Bootstrapping means building the GNU C Library, GNU Compiler Collection and several
other key system programs. The GNU Compiler Collection even has to be built twice: first
with the "generic" compiler we provide, and a second time with the compiler you then just
built.

Before starting the bootstrap, we list a couple of options you might or might not want. If
you do not want to read those, continue with Bootstrapping the System.

Optional: Decreasing Compilation Time

If you want to speed up the bootstrapping, you can temporarily deselect java-support.
This means that the GNU Compiler Collection and the GNU C Library will be compiled
without java-support (which decreases compilation time considerably). Although this
means that you wont have the GNU Java Compiler (gcj) this does not mean that your
system won’t be able to use java applets and other java-related stuff.

To deselect java-support temporarily, define USE="-java" before firing up the bootstrap
script.

Code listing 9: Deselecting java support

export USE="-java"

Don’t forget to unset the variable after bootstrapping:

53

Code listing 10: Unsetting USE

unset USE

Optional: Downloading the Sources First

If you haven’t copied over all source code before, then the bootstrap script will download
all necessary files. It goes without saying that this only works if you have a working
network connnection :-) If you want to download the source code first and later bootstrap
the system (for instance because you don’t want to have your internet connection open
during the compilation) use the -f option of the bootstrap script, which will fetch (hence
the letter f) all source code for you.

Code listing 11: Downloading the necessary sources

cd /usr/portage
scripts/bootstrap.sh -f

Bootstrapping the System

Okay then, take your keyboard and punch in the next commands to start the bootstrap.
Then go amuse yourself with something else (for instance harass Gentoo developers on
#gentoo), because this step takes quite some time to finish.

Code listing 12: Bootstrapping the system

cd /usr/portage
scripts/bootstrap.sh

If you have altered the CHOST setting in /etc/make.conf previously, you need to
reinitialize some variables in order for gcc to work fast:

Code listing 13: Reinitialize environment variables

source /etc/profile

Now continue with the next step, Progressing from Stage2 to Stage3.

6.d. Progressing from Stage2 to Stage3

Introduction

If you are reading this section, then you have a bootstrapped system (either because you
bootstrapped it previously, or you are using a stage2). Then it is now time to build all
system packages.

All system packages? No, not really. In this step, you will build the system packages of
which there are no alternatives to use. Some system packages have several alternatives
(such as system loggers) and as Gentoo is all about choices, we don’t want to force one
upon you.

Optional: Viewing what will be done

If you want to know what packages will be installed, execute emerge --pretend system.
This will list all packages that will be built. As this list is pretty big, you should also use a
pager like less or more to go up and down the list.

Code listing 14: View what ’emerge system’ will do

emerge --pretend system | less

Optional: Downloading the Sources

54

If you want emerge to download the sources before you continue (for instance because
you don’t want the internet connection to be left open while you are building all packages)
you can use the --fetchonly option of emerge which will fetch all sources for you.

Code listing 15: Fetching the sources

emerge --fetchonly system

Building the System

To start building the system, execute emerge system. Then go do something to keep
your mind busy, because this step takes a long time to complete.

Code listing 16: Building the System

emerge system

When the building has completed, continue with Configuring the Kernel.

6.e. Optional: Preparing for GRP

Introduction

If you are booted from a x86 or ppc CD-1 LiveCD you can relax and continue with
Configuring the Kernel as the installation of prebuilt packages happens at the very end of
the installation.

If you are booted from a different architecture LiveCD and you want to use the prebuilt
packages provided by the LiveCD, continue with Copying over the GRP packages.

If you want to use the prebuilt packages provided by a Gentoo mirror, continue with
Configuring Portage for GRP Downloads.

Copying over the GRP packages

You should now copy over the packages onto your filesystem so that Portage is able to
use them. First of all, open a second terminal by pressing Alt-F2. This is needed as we
need to work from the LiveCD, not from the chrooted environment you’re currently
working in.

You should be greeted by a root prompt (#). Copy over the packages using the following
commands:

Code listing 17: Copy over precompiled packages

mkdir -p /mnt/gentoo/usr/portage/packages/All
cp /mnt/cdrom/packages/All/* /mnt/gentoo/usr/portage/packages/All/

After this step has completed, return to the chrooted environment by pressing Alt-F1.

Now pay close attention! Your Portage snapshot is in place and the GRP packages are
ready to be used. However, Portage doesn’t automagically use them unless you tell it to.
Luckily, this is hardly difficult: every time you are asked to install a package using emerge,
you must add --usepkg as an option:

Code listing 18: Example for Installing a GRP Package

(Example without GRP)
emerge vanilla-sources

(Example with GRP)
emerge --usepkg vanilla-sources

That’s all there is to it. Just don’t forget to add --usepkg. Now continue with Configuring

55

the Kernel.

Configuring Portage for GRP Downloads

First of all, you need to edit /etc/make.conf and define the PORTAGE_BINHOST variable
so that it points to the server from which you want to download the GRP packages.
Please check our mirror list for the available mirrors.

Code listing 19: Editing /mnt/gentoo/etc/make.conf

nano -w /etc/make.conf

Code listing 20: Setting the PORTAGE_BINHOST variable

PORTAGE_BINHOST="ftp://some.mirror.com/pub/gentoo/grp/2004/athlon-xp"

Save and exit (by pressing Ctrl-X and confirming). With this in place, you must now pay
close attention. Portage will not automagically download the GRP packages if you don’t
instruct it to. However, this isn’t hard: every time you are asked to install a package using
emerge, you must add --getbinpkg as an option:

Code listing 21: Example for Downloading GRP Packages

(Example without downloading GRP)
emerge vanilla-sources

(Example with downloading GRP)
emerge --getbinpkg vanilla-sources

That’s all there is to it. Just don’t forget to add --getbinpkg. Now continue with
Configuring the Kernel.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

56

57

7. Configuring the Kernel
Content:

Timezone
Installing the Sources
Default: Manual Configuration
Alternative: Using genkernel
Installing Separate Kernel Modules

7.a. Timezone

You first need to select your timezone so that your system knows where it is located.
Look for your timezone in /usr/share/zoneinfo, then make a symlink to
/etc/localtime using ln:

Code listing 1: Setting the timezone information

ls /usr/share/zoneinfo
(Suppose you want to use GMT)
ln -sf /usr/share/zoneinfo/GMT /etc/localtime

7.b. Installing the Sources

Choosing a Kernel

The core around which all distributions are built is the Linux kernel. It is the layer between
the user programs and your system hardware. Gentoo provides its users several possible
kernel sources. A full listing with description is available at the Gentoo Kernel Guide.

For x86-based systems we have, amongst other kernels, vanilla-sources (the default
kernel source as developed by the linux-kernel developers), gentoo-sources (kernel
source patched with performance-enhancing features), gentoo-dev-sources (kernel
v2.6 source patched with performance-enhancing features and stability improvements),
xfs-sources (kernel source with the latest XFS support), gs-sources (kernel source
patched for server usage), gaming-sources (kernel source patched for optimal gaming
performance), development-sources (vanilla 2.6 kernel source), ...

For alpha-based systems we have vanilla-sources (the default kernel source as
developed by the linux-kernel developers), alpha-sources (kernel source optimized for
alpha users) and compaq-sources (kernel source as used by RedHat for Alpha,
maintained by Compaq).

For sparc-based systems we have vanilla-sources (the default kernel source as
developed by the linux-kernel developers) and sparc-sources (kernel source optimized
for SPARC users).

MIPS-based systems can choose from mips-sources (the default kernel source for the
MIPS architecture) and mips-prepatch-sources (prerelease kernel tree).

For AMD64-based systems we have gentoo-dev-sources (kernel v2.6 source patched
with amd64 specific fixes for stability, performance and hardware support).

Other architectures should use the kernel source specifically optimized for their
architecture: hppa-sources (HPPA) or ppc-sources (PowerPC).

Choose your kernel source and install it using emerge.

In the next example we install the vanilla-sources (as gentoo-sources isn’t available
on all architectures). Of course substitute with your choice of sources:

58

Code listing 2: Installing a kernel source

emerge vanilla-sources

When you take a look in /usr/src you should see a symlink called linux pointing to
your kernel source:

Code listing 3: Viewing the kernel source symlink

ls -l /usr/src/linux
lrwxrwxrwx 1 root root 12 Oct 13 11:04 /usr/src/linux -> linux-2.4.25

If this isn’t the case (i.e. the symlink points to a different kernel source) change the
symlink before you continue:

Code listing 4: Changing the kernel source symlink

rm /usr/src/linux && ln -s /usr/src/linux-2.4.25 /usr/src/linux

Now it is time to configure and compile your kernel source. All architectures can use
genkernel for this, which will build a generic kernel as used by the LiveCD. We explain
the "manual" configuration first though, as it is the best way to optimize your environment.

If you want to manually configure your kernel, continue now with Default: Manual
Configuration. If you want to use genkernel you should read Alternative: Using
genkernel instead.

7.c. Default: Manual Configuration

Introduction

Manually configuring a kernel is often seen as the most difficult course every Linux users
ever has to go through. Nothing is less true -- after configuring a couple of kernels you
don’t even remember that it was difficult ;)

However, one thing is true: you must know your system when you start configuring a
kernel manually. Most information can be gathered by viewing the contents of /proc/pci
(or by using lspci if available). You can also run lsmod to see what kernel modules the
LiveCD uses (it might provide you with a nice hint on what to enable).

Now go to your kernel source directory and execute make menuconfig. This will fire up
an ncurses-based configuration menu.

Code listing 5: Invoking menuconfig

cd /usr/src/linux
make menuconfig

You will be greeted with several configuration sections. We’ll first list some options you
must activate (otherwise Gentoo will not function, or not function properly without
additional tweaks).

Activating Required Options

First of all, activate the use of development and experimental code/drivers. You need
this, otherwise some very important code/drivers won’t show up:

Code listing 6: Selecting experimental code/drivers

Code maturity level options --->
 [*] Prompt for development and/or incomplete code/drivers

Now go to File Systems and select support for the filesystems you use. Don’t compile

59

them as modules, otherwise your Gentoo system will not be able to mount your partitions.
Also select Virtual memory, /proc file system, /dev file system +
Automatically mount at boot:

Code listing 7: Selecting necessary file systems

File systems --->
 [*] Virtual memory file system support (former shm fs)
 [*] /proc file system support
 [*] /dev file system support (EXPERIMENTAL)
 [*] Automatically mount at boot

(Deselect the following unless you have a 2.6 kernel)
 [] /dev/pts file system for Unix98 PTYs

(Select one or more of the following options as needed by your system)
 <*> Reiserfs support
 <*> Ext3 journalling file system support
 <*> JFS filesystem support
 <*> Second extended fs support
 <*> XFS filesystem support

Note: Users of a 2.6 kernel will find some of the mentioned options under Pseudo filesystems which is a
subpart of File systems.

If you are using PPPoE to connect to the Internet, you will need the following options in
the kernel:

Code listing 8: Selecting PPPoE necessary drivers

Network device support --->
 <*> PPP (point-to-point protocol) support
 <*> PPP support for async serial ports
 <*> PPP support for sync tty ports

Note: Users of a 2.6 kernel will find the mentioned options under Networking support which is a subpart of
Device Drivers.

The two compression options won’t harm but are not definitely needed, neither does the
PPP over Ethernet option, that might only be used by rp-pppoe when configured to do
kernel mode PPPoE.

Note: Users of a 2.6 kernel will find the mentioned options under Device Drivers.

If you require it, don’t forget to include support in the kernel for your ethernet card.

Now, dependent on your architecture, you might need to select more options:

Activating x86-recommended Options
Activating Alpha-recommended Options
Activating HPPA-recommended Options
Activating PPC-recommended Options
Activating SPARC-recommended Options
Activating MIPS-recommended Options
Activating AMD64-recommended Options

Activating x86-recommended Options

If you have an Intel CPU that supports HyperThreading (tm), or you have a multi-CPU
system, you should activate "Symmetric multi-processing support":

Code listing 9: Activating SMP support

Processor type and features --->
 [*] Symmetric multi-processing support

When you’ve finished configuring the kernel, continue with Compiling and Installing.

60

Activating Alpha-recommended Options

The following options are recommended for Alpha-users:

Code listing 10: Alpha-specific options

General setup --->
 <*> SRM environment through procfs
 <*> Configure uac policy via sysctl

Plug and Play configuration --->
 <*> Plug and Play support
 <M> ISA Plug and Play support

SCSI support --->
 SCSI low-level drivers --->
 <*> SYM53C8XX Version 2 SCSI support (NEW)
 <*> Qlogic ISP SCSI support

Network device support --->
 Ethernet (10 or 100 Mbit) --->
 <M> DECchip Tulip (dc21x4x) PCI support
 <M> Generic DECchip & DIGITAL EtherWORKS PCI/EISA
 <M> EtherExpressPro/100 support (eepro100)
 <M> EtherExpressPro/100 support (e100)
 Ethernet (1000 Mbit) --->
 <M> Alteon AceNIC
 [*] Omit support for old Tigon I
 <M> Broadcom Tigon3
 [*] FDDI driver support
 <M> Digital DEFEA and DEFPA
 <*> PPP support
 <*> PPP Deflate compression

Character devices --->
 [*] Support for console on serial port
 [*] Direct Rendering Manager

File systems --->
 <*> Kernel automounter version 4 support
 Network File Systems --->
 <*> NFS
 [*] NFSv3 client
 <*> NFS server
 [*] NFSv3 server
 Partition Types --->
 [*] Advanced partition selection
 [*] Alpha OSF partition support
 Native Language Support
 <*> NLS ISO 8859-1

Sound --->
 <M> Sound card support
 <M> OSS sound modules
 [*] Verbose initialisation
 [*] Persistent DMA buffers
 <M> 100% Sound Blaster compatibles

When you’ve finished configuring the kernel, continue with Compiling and Installing.

Activating HPPA-recommended Options

If you have a HIL mouse or keyboard, do not forget to compile in support for them.

Code listing 11: Activating HIL support

Input core support --->
 [*] Keyboard support
 [*] Mouse support
 [*] Event interface support

If you have no mouse on your HIL port, only use the basic support:

Code listing 12: Basic HIL support

HIL support --->
 [*] HIL Keyboard (basic) support

If you however want full HIL support, select the following options:

61

Code listing 13: Full HIL support

HIL support --->
 [*] HP System Device Controller i8042 Support
 [*] HIL MLC Support
 [*] HIL Keyboard (full) support
 [*] HIL Mouse & Pointer support

Also include display driver support:

Code listing 14: Display Driver support

Graphics support --->
 [*] Support for frame buffer devices
 [*] HP STI frame buffer device support
 Console display driver support --->
 [*] STI text console

When you’re done configuring your kernel, continue with Compiling and Installing.

Activating PPC-recommended Options

First of all, disable ADB raw keycodes:

Code listing 15: Disabling ADB raw keycodes

Macintosh Device Drivers --->
 [] Support for ADB raw keycodes

Also choose the correct RTC support (disable the Enhanced RTC option):

Code listing 16: Activating the correct RTC option

Character devices --->
 [] Enhanced RTC

General setup --->
 [*] Support for /dev/rtc

Users of OldWorld machines will want HFS support so they can copy compiled kernels to
the MacOS partition.

Code listing 17: Activating HFS support

File Systems --->
 [*] HFS Support

When you’re done configuring your kernel, continue with Compiling and Installing.

Activating SPARC-recommended Options

First activate the correct bus-support:

Code listing 18: Activating SBUS/UPA

Console drivers --->
 Frame-buffer support --->
 [*] SBUS and UPA framebuffers
 [*] Creator/Creator3D support (Only for UPA slot adapter used in many Ultras)
 [*] CGsix (GX,TurboGX) support (Only for SBUS slot adapter used in many SPARCStations)

Of course you want support for the OBP:

Code listing 19: Activating OBP Support

Misc Linux/SPARC drivers --->
 [*] /dev/openprom device support

62

You will also need SCSI-specific support:

Code listing 20: Activating SCSI-specific support

SCSI support --->
 SCSI low-level drivers --->
 <*> Sparc ESP Scsi Driver (Only for SPARC ESP on-board SCSI adapter)
 <*> PTI Qlogic, ISP Driver (Only for SBUS SCSI controllers from PTI or QLogic)
 <*> SYM53C8XX Version 2 SCSI support (Only for Ultra 60 on-board SCSI adapter)

To support your network card, select one of the following:

Code listing 21: Activating networking support

Network device support --->
 Ethernet (10 or 100Mbit) --->
 <*> Sun LANCE support (Only for SPARCStation, older Ultra systems, and as Sbus option)
 <*> Sun Happy Meal 10/100baseT support (Only for Ultra; also supports "qfe" quad-ethernet on PCI and Sbus)

When you’re done configuring your kernel, continue with Compiling and Installing.
However, after having compiled the kernel, check its size:

Code listing 22: Check kernel size

ls -lh vmlinux
-rw-r--r-- 1 root root 2.4M Oct 25 14:38 vmlinux

If the (uncompressed) size is bigger than 2.5Mb (for Sparc32) or 3.5Mb (for Sparc64),
reconfigure your kernel untill it doesn’t exceed these limits. One way of accomplishing
this is by having most kernel drivers compiled as modules. Ignoring this can lead to a
non-booting kernel.

Also, if your kernel is just a tad too big, you can try stripping it using the strip command:

Code listing 23: Stripping the kernel

strip -R .comment -R .note vmlinux

Activating MIPS-recommended Options

If you are using an Indy/Indigo2 based system, you need to activate support for it.

Code listing 24: Activating SGI IP22

Machine selection --->
 [*] Support for SGI IP22 (Indy/Indigo2)

If you want to run Irix binaries, include the following option:

Code listing 25: Including IRIX Binary support

General setup --->
 [*] Include IRIX binary compatibility

If you have ISA/EISA cards in your SGI Indigo2, enable support for it.

Code listing 26: Enabling ISA/EISA support for SGI Indigo2

General setup --->
 [*] Indigo-2 (IP22) EISA bus support
 [*] ISA bus support

If you have a SGI parallel port, you can enable support for it. If you have an ISA parallel
port you should select "PC-style hardware" instead.

63

Code listing 27: Enabling SGI Parallel Port Support

Parallel port support --->
 <*> Parallel port support
 <*> SGI Indy/Indigo2 hardware (EXPERIMENTAL) (NEW)
 <*> IEEE 1284 transfer modes (NEW)

If you want to use the Indigo2 ISA slots, enable the plug and play support.

Code listing 28: Enabling PnP support for ISA

Plug and Play configuration --->
 <*> Plug and Play support
 <*> ISA Plug and Play support

Don’t forget to enable SCSI support, and use the SGI WD93C93 Driver:

Code listing 29: Enabling WD93C93 Driver Support

SCSI low-level drivers --->
 <*> SGI WD93C93 SCSI Driver

For network cards you probably need support for the SGI Seeq ethernet controller:

Code listing 30: Enabling SGI Seeq Support

Network device support --->
 Ethernet (10 or 100Mbit) --->
 [*] Ethernet (10 or 100Mbit)
 [*] SGI Seeq ethernet controller support

Don’t forget to enable serial console support and enable support for the SGI Zilog85C30:

Code listing 31: Enable SGI Zilog85C30 Support

Character devices --->
 [*] Non-standard serial port support
 [*] SGI Zilog85C30 serial support

Also don’t forget to enable the Indy/I2 Watchdog support as well as the SGI DS1286 RTC
support:

Code listing 32: Enable Watchdog and RTC Support

Character Devices --->
 [*] SGI DS1286 RTC support
 Watchdog Cards --->
 [*] Watchdog Timer Support
 <*> Indy/I2 Hardware Watchdog

You should also enable support for SGI partitions :)

Code listing 33: Enabling Support for SGI Partitions

File Systems --->
 Partition Types --->
 [*] Advanced partition selection
 [*] SGI partition support

If you have an SGI Newport (XL Gfx) Card and want to use it, then you’ll want to enable
support for it:

Code listing 34: Enabling Support for the SGI Newport Card

Console drivers --->
 <*> SGI Newport Console support (NEW)

64

If you want sound support on your Indy/Indigo2, enable support for it:

Code listing 35: Enabling Support for the SGI HAL2

Sound --->
 <*> Sound card support
 <*> SGI HAL2 sound (EXPERIMENTAL)

When you’re done configuring your kernel, continue with Compiling and Installing.

Activating AMD64-recommended Options

If you have a multi-CPU Opteron system, you should activate "Symmetric
multi-processing support":

Code listing 36: Activating SMP support

Processor type and features --->
 [*] Symmetric multi-processing support

When you’ve finished configuring the kernel, continue with Compiling and Installing.

Compiling and Installing

Now that your kernel is configured, it is time to compile and install it. Exit the
configuration and run make dep && make bzImage modules modules_install:

Code listing 37: Compiling the kernel

(For x86-based systems, 2.4 kernel)
make dep && make bzImage modules modules_install

(For other systems, 2.4 kernel)
make dep && make vmlinux modules modules_install

(For 2.6 kernel)
make && make modules_install

When the kernel is done compiling, copy over the kernel image to /boot. In the next
example we assume you have configured and compiled vanilla-sources-2.4.25
(which may not be the right kernel for your architecture!):

Code listing 38: Installing the kernel

(For x86-based systems)
cp arch/i386/boot/bzImage /boot/kernel-2.4.25
cp System.map /boot/System.map-2.4.25

(For amd64-based systems)
cp arch/x86_64/boot/bzImage /boot/kernel-2.4.25

(For other systems)
cp vmlinux /boot/kernel-2.4.25
cp System.map /boot/System.map-2.4.25

It is also wise to copy over your kernel configuration file to /boot, just in case :)

Code listing 39: Backing up your kernel configuration

cp .config /boot/config-2.4.25

If you are a MIPS user and your system doesn’t boot ELF kernels, compile the kernel
using make vmlinux.ecoff instead of make vmlinux. The kernel image will be saved as
arch/mips/boot/vmlinux.ecoff instead of vmlinux.

Now continue with Installing Separate Kernel Modules.

7.d. Alternative: Using genkernel

65

If you are reading this section, you have chosen to use our genkernel script to configure
your kernel for you.

Now that your kernel source tree is installed, it’s now time to compile your kernel by using
our genkernel script to automatically build a kernel for you. genkernel works by
configuring a kernel nearly identically to the way our LiveCD kernel is configured. This
means that when you use genkernel to build your kernel, your system will generally
detect all your hardware at boot-time, just like our Live CD does. Because genkernel
doesn’t require any manual kernel configuration, it is an ideal solution for those users
who may not be comfortable compiling their own kernels.

Now, let’s see how to use genkernel. First, emerge the genkernel ebuild:

Code listing 40: Emerging genkernel

emerge genkernel

Now, compile your kernel sources by running genkernel all. Be aware though, as
genkernel compiles a kernel that supports almost all hardware, this compilation will take
quite a while to finish!

Code listing 41: Running genkernel

genkernel all
GenKernel v3.0.1_beta10
* ARCH: x86
* KERNEL VER: 2.4.25
* kernel: configuring source
* kernel: running mrproper
(Output removed to increase readability)
* Kernel compiled successfully!
* Required Kernel Params:
* : root=/dev/ram0 init=/linuxrc real_root=/dev/$ROOT
* where $ROOT is the devicenode for your root partition as
* you should have specified in /etc/fstab
*
* You MUST tell your bootloader to use the generated initrd
*
* Recommended Kernel Params:
* : vga=0x317 splash=verbose
*
* Do NOT report kernel bugs (configs included) as genkernel bugs.
* Make sure you have the latest genkernel before reporting bugs
*
* For more info see /usr/share/genkernel/README

Once genkernel completes, a kernel, full set of modules and initial root disk (initrd) will
be created. We will use the kernel and initrd when configuring a boot loader later in this
document. Write down the names of the kernel and initrd as you will need it when writing
the bootloader configuration file. The initrd will be started immediately after booting to
perform hardware autodetection (just like on the Live CD) before your "real" system starts
up.

Now, let’s perform one more step to get our system to be more like the Live CD -- let’s
emerge hotplug. While the initrd autodetects hardware that is needed to boot your
system, hotplug autodetects everything else. To emerge and enable hotplug, type the
following:

Code listing 42: Emerging and enabling hotplug

emerge hotplug
rc-update add hotplug default

7.e. Installing Separate Kernel Modules

Installing Extra Modules

If appropriate, you should emerge ebuilds for any additional hardware that is on your
system. Here is a list of kernel-related ebuilds that you could emerge:

66

Ebuild Purpose Command
nvidia-kernel Accelerated NVIDIA graphics for XFree86 emerge nvidia-kernel

nforce-net On-board ethernet controller on NVIDIA NForce(2)
motherboards emerge nforce-net

nforce-audio On-board audio on NVIDIA NForce(2) motherboards emerge nforce-audio

e100 Intel e100 Fast Ethernet Adapters emerge e100

e1000 Intel e1000 Gigabit Ethernet Adapters emerge e1000

emu10k1 Creative Sound Blaster Live!/Audigy support emerge emu10k1

ati-drivers Accelerated ATI Radeon 8500+/FireGL graphics for XFree86 emerge ati-drivers

ati-drivers-extra Graphical ATI tools emerge ati-drivers-extra

xfree-drm

Accelerated graphics for ATI Radeon up to 9200, Rage128,
Matrox, Voodoo and other cards for XFree86. Please check
the IUSE_VIDEO_CARDS variable in the
/usr/portage/x11-base/xfree-drm ebuilds to see what you
need to fill in as yourcard.

VIDEO_CARDS="yourcard"
emerge xfree-drm

Beware though, some of these ebuilds might deal with big dependencies. To verify what
packages will be installed by emerging an ebuild, use emerge --pretend. For instance,
for the emu10k1 package:

Code listing 43: View full installation package listing

emerge --pretend emu10k1

If you don’t like the packages it wants to install, use emerge --pretend --verbose to
see what USE-flags are checked when deciding the dependencies:

Code listing 44: View USE-flag usage

emerge --pretend --verbose emu10k1
...
[ebuild N] media-sound/aumix-2.8 +gpm +nls +gtk +gnome +alsa -gtk2

In the previous example you can see that one of emu10k1’s dependencies (aumix) uses
the gtk and gnome USE-flags, making gtk (which depends on XFree) be compiled with it.

If you don’t want all this to be compiled, deselect all USE-flags, for instance:

Code listing 45: Emerging emu10k1 with all USE-flags deselected

USE="-gpm -nls -gtk -gnome -alsa" emerge --pretend emu10k1

When you’re happy with the results, remove the --pretend to start installing emu10k1.

Configuring the Modules

If you are not using hotplug, you should list the modules you want automatically loaded
in /etc/modules.autoload.d/kernel-2.4 (or kernel-2.6). You can add extra options
to the modules too if you want.

To view all available modules, run the following find command. Don’t forget to substitute
"<kernel version>" with the version of the kernel you just compiled:

Code listing 46: Viewing all available modules

find /lib/modules/<kernel version>/ -type f -iname ’*.o’ -or -iname ’*.ko’

For instance, to automatically load the 3c59x.o module:

Code listing 47: /etc/modules.autoload.d/kernel-2.4 or kernel-2.6

3c59x

Now run modules-update to commit your changes to the /etc/modules.conf file:

67

Code listing 48: Running modules-update

modules-update

Continue the installation with Configuring your System.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

68

69

8. Configuring your System
Content:

Filesystem Information
Networking Information
System Information

8.a. Filesystem Information

What is fstab?

Under Linux, all partitions used by the system must be listed in /etc/fstab. This file
contains the mountpoints of those partitions (where they are seen in the file system
structure), how they should be mounted (special options) and when (automatically or not,
can users mount those or not, etc.).

Creating /etc/fstab

/etc/fstab uses a special syntax. Every line consists of six fields, separated by
whitespace (space(s), tabs or a mixture). Each field has its own meaning:

The first field shows the partition described (the path to the device file)
The second field shows the mountpoint at which the partition should be mounted
The third field shows the filesystem used by the partition
The fourth field shows the mountoptions used by mount when it wants to mount the
partition. As every filesystem has its own mountoptions, you are encouraged to
read the mount manpage (man mount) for a full listing. Multiple mountoptions are
comma-separated.
The fifth field is used by dump to determine if the partition needs to be dumped or
not. You can generally leave this as 0 (zero).
The sixth field is used by fsck to determine the order in which filesystems should
be checked if the system wasn’t shut down properly. The root filesystem should
have 1 while the rest should have 2 (or 0 in case a filesystem check isn’t
necessary).

So start nano (or your favorite editor) to create your /etc/fstab:

Code listing 1: Opening /etc/fstab

nano -w /etc/fstab

Let us take a look at how we write down the options for the /boot partition. This is just an
example, so if your architecture doesn’t require a /boot partition, don’t copy it verbatim.

In our default x86 partitioning example /boot is the /dev/hda1 partition, with ext2 as
filesystem. It shouldn’t be mounted automatically (noauto) but does need to be checked.
So we would write down:

Code listing 2: An example /boot line for /etc/fstab

/dev/hda1 /boot ext2 noauto 1 2

Now, to improve performance, most users would want to add the noatime option as
mountoption, which results in a faster system since access times aren’t registered (you
don’t need those generally anyway):

Code listing 3: An improved /boot line for /etc/fstab

/dev/hda1 /boot ext2 noauto,noatime 1 2

If we continue with this, we would end up with the following three lines (for /boot, / and

70

the swap partition):

Code listing 4: Three /etc/fstab lines

/dev/hda1 /boot ext2 noauto,noatime 1 2
/dev/hda2 none swap sw 0 0
/dev/hda3 / ext3 noatime 0 1

To finish up, you should add a rule for /proc, tmpfs (required) and for your CD-ROM
drive (and of course, if you have other partitions or drives, for those too):

Code listing 5: A full /etc/fstab example

/dev/hda1 /boot ext2 noauto,noatime 1 2
/dev/hda2 none swap sw 0 0
/dev/hda3 / ext3 noatime 0 1

none /proc proc defaults 0 0
none /dev/shm tmpfs defaults 0 0

/dev/cdroms/cdrom0 /mnt/cdrom auto noauto,user 0 0

auto makes mount guess for the filesystem (recommended for removable media as they
can be created with one of many filesystems) and user makes it possible for non-root
users to mount the CD.

Now use the above example to create your /etc/fstab. If you are a SPARC-user, you
should add the following line to your /etc/fstab too:

Code listing 6: Adding openprom filesystem to /etc/fstab

none /proc/openprom openpromfs defaults 0 0

If you need usbfs, add the following line to /etc/fstab:

Code listing 7: Adding usbfs filesystem to /etc/fstab

none /proc/bus/usb usbfs defaults 0 0

Reread your /etc/fstab, save and quit to continue.

8.b. Networking Information

Hostname, Domainname etc.

One of the choices the user has to make is name his PC. This seems to be quite easy,
but lots of users are having difficulties finding the appropriate name for their Linux-pc. To
speed things up, know that any name you choose can be changed afterwards. For all we
care, you can just call your system tux and domain homenetwork.

We use these values in the next examples. First we set the hostname:

Code listing 8: Setting the hostname

echo tux > /etc/hostname

Second we set the domainname:

Code listing 9: Setting the domainname

echo homenetwork > /etc/dnsdomainname

If you have a NIS domain (if you don’t know what that is, then you don’t have one), you
need to define that one too:

71

Code listing 10: Setting the NIS domainname

echo nis.homenetwork > /etc/nisdomainname

Now add the domainname script to the default runlevel:

Code listing 11: Adding domainname to the default runlevel

rc-update add domainname default

Configuring your Network

Before you get that "Hey, we’ve had that already"-feeling, you should remember that the
networking you set up in the beginning of the gentoo installation was just for the
installation. Right now you are going to configure networking for your Gentoo system
permanently.

All networking information is gathered in /etc/conf.d/net. It uses a straightforward yet
not intuitive syntax if you don’t know how to setup networking manually. But don’t fear,
we’ll explain everything :)

First open /etc/conf.d/net with your favorite editor (nano is used in this example):

Code listing 12: Opening /etc/conf.d/net for editing

nano -w /etc/conf.d/net

The first variable you’ll find is iface_eth0. It uses the following syntax:

Code listing 13: iface_eth0 syntaxis

iface_eth0="<your ip address> broadcast <your broadcast address> netmask <your netmask>"

If you use DHCP (automatic IP retrieval), you should just set iface_eth0 to dhcp. If you
use rp-pppoe (e.g. for ADSL), set it to up. If you need to setup your network manually and
you’re not familiar with all the above terms, please read the section on Understanding
Network Terminology if you haven’t done so already.

So let us give three examples; the first one uses DHCP, the second one a static IP
(192.168.0.2) with netmask 255.255.255.0, broadcast 192.168.0.255 and gateway
192.168.0.1 while the third one just activates the interface for rp-pppoe usage:

Code listing 14: Examples for /etc/conf.d/net

(For DHCP)
iface_eth0="dhcp"

(For static IP)
iface_eth0="192.168.0.2 broadcast 192.168.0.255 netmask 255.255.255.0"
gateway="eth0/192.168.0.1"

(For rp-pppoe)
iface_eth0="up"

If you have several network interfaces, create extra iface_eth variables, like
iface_eth1, iface_eth2 etc. The gateway variable shouldn’t be reproduced as you can
only set one gateway per computer.

Now save the configuration and exit to continue.

Automatically Start Networking at Boot

To have your network interfaces activated at boot, you need to add those to the default
runlevel. If you have PCMCIA interfaces you should skip this action as the PCMCIA
interfaces are started by the PCMCIA init script.

72

Code listing 15: Adding net.eth0 to the default runlevel

rc-update add net.eth0 default

If you have several network interfaces, you need to create the appropriate net.eth1,
net.eth2 etc. initscripts for those. You can use ln to do this:

Code listing 16: Creating extra initscripts

cd /etc/init.d
ln -s net.eth0 net.eth1
rc-update add net.eth1 default

Writing Down Network Information

You now need to inform Linux about your network. This is defined in /etc/hosts and
helps in resolving hostnames to IP addresses for hosts that aren’t resolved by your
nameserver. For instance, if your internal network consists of three PCs called jenny
(192.168.0.5), benny (192.168.0.6) and tux (192.168.0.7 - this system) you would open
/etc/hosts and fill in the values:

Code listing 17: Opening /etc/hosts

nano -w /etc/hosts

Code listing 18: Filling in the networking information

127.0.0.1 localhost
192.168.0.5 jenny.homenetwork jenny
192.168.0.6 benny.homenetwork benny
192.168.0.7 tux.homenetwork tux

If your system is the only system (or the nameservers handle all name resolution) a
single line is sufficient:

Code listing 19: /etc/hosts for lonely or fully integrated PCs

127.0.0.1 localhost tux

Save and exit the editor to continue.

If you don’t have PCMCIA, you can now continue with System Information.
PCMCIA-users should read the following topic on PCMCIA.

Optional: Get PCMCIA Working

PCMCIA-users should first install the pcmcia-cs package:

Code listing 20: Installing pcmcia-cs

emerge pcmcia-cs

When pcmcia-cs is installed, add pcmcia to the default runlevel:

Code listing 21: Adding pcmcia to the default runlevel

rc-update add pcmcia default

8.c. System Information

Gentoo uses /etc/rc.conf for general, system-wide configuration. Open up
/etc/rc.conf and enjoy all the comments in that file :)

73

Code listing 22: Opening /etc/rc.conf

nano -w /etc/rc.conf

As you can see, this file is well commented to help you set up the necessary
configuration variables. Take special care with the KEYMAP setting: if you select the wrong
KEYMAP you will get weird results when typing on your keyboard.

Note: Users of USB-based SPARC systems and SPARC clones might need to select an i386 keymap (such
as "us") instead of "sunkeymap".

When you’re finished configuring /etc/rc.conf, save and exit, then continue with
Configuring the Bootloader.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

74

75

9. Configuring the Bootloader
Content:

Making your Choice
Default: Using GRUB
Alternative: Using LILO
Alternative: Using aboot
Alternative: Using MILO
Alternative: Using SILO
Alternative: Using PALO
Alternative: Using yaBoot
Alternative: BootX
Alternative: MIPS PROM

9.a. Making your Choice

Introduction

Now that your kernel is configured and compiled and the necessary system configuration
files are filled in correctly, it is time to install a program that will fire up your kernel when
you start the system. Such a program is called a bootloader. But before you start,
consider your options...

Several bootloaders exist for Linux. However, these bootloaders only function on a small
set of architectures. Therefore you must choose between the bootloaders that support
your architecture.

The next table lists the architectures and the supported bootloaders. Pick a bootloader
based on your architecture. For instance, if you have a Pentium IV, then your architecture
is x86. You have the choice between GRUB (recommended) and LILO.

Architecture Recommended Alternatives

x86 GRUB LILO

alpha aBoot MILO

sparc SILO

ppc yaBoot (NewWorld), BootX (OldWorld)

hppa PALO

mips MIPS PROM

amd64 GRUB

Optional: Framebuffer

Note: This section only applies to x86, AMD64 and PPC users who have configured framebuffer support in
their kernel. This includes genkernel users.

If you have configured your kernel with framebuffer support, you have to add a
vga-statement to your bootloader configuration file if you require framebuffer. The next
table lists the available vga-values you can use. In the example configuration files we use
800x600 @ 16bpp, thus 788.

640x480 800x600 1024x768 1280x1024

8 bpp 769 771 773 775

16 bpp 785 788 791 794

32 bpp 786 789 792 795

Remember (or write down) your value; you will need it shortly hereafter.

76

Now select the bootloader of your choice from the table above.

9.b. Default: Using GRUB

Understanding GRUB’s terminology

Important: GRUB can only be used with x86- and AMD64-based systems!

The most critical part of understanding GRUB is getting comfortable with how GRUB
refers to hard drives and partitions. Your Linux partition /dev/hda1 is called (hd0,0)
under GRUB. Notice the parenthesis around the hd0,0 - they are required.

Hard drives count from zero rather than "a" and partitions start at zero rather than one.
Be aware too that with the hd devices, only hard drives are counted, not atapi-ide devices
such as cdrom players and burners. Also, the same construct is used with scsi drives.
(Normally they get higher numbers than ide drives except when the bios is configured to
boot from scsi devices.)

Assuming you have a hard drive on /dev/hda, a cdrom player on /dev/hdb, a burner on
/dev/hdc, a second hard drive on /dev/hdd and no SCSI hard drive, /dev/hdd7 gets
translated to (hd1,6). It might sound tricky and tricky it is indeed, but as we will see,
GRUB offers a tab completion mechanism that comes handy for those of you having a lot
of hard drives and partitions and who are a little lost in the GRUB numbering scheme.

Having gotten the feel for that, it is time to install GRUB.

Installing GRUB

To install GRUB, let’s first emerge it. Users of the x86 architecture have to install grub,
AMD64 users will need to emerge grub-static:

Code listing 1: Installing GRUB

(For the x86 architecture)
emerge grub

(For the AMD64 architecture)
emerge grub-static
cp -Rpv /usr/share/grub/i386-pc/* /boot/grub

To start configuring GRUB, you type in grub. You’ll be presented with the grub> grub
command-line prompt. Now, you need to type in the right commands to install the GRUB
boot record onto your hard drive.

Code listing 2: Starting the GRUB shell

grub

In the example configuration we want to install GRUB so that it reads its information from
the boot-partition /dev/hda1, and installs the GRUB boot record on the hard drive’s MBR
(master boot record) so that the first thing we see when we turn on the computer is the
GRUB prompt. Of course, if you haven’t followed the example configuration during the
installation, change the commands accordingly.

The tab completion mechanism of GRUB can be used from within GRUB. For instance, if
you type in "root (" followed by a TAB, you will be presented with a list of devices (such
as hd0). If you type in "root (hd0," followed by a TAB, you will receive a list of available
partitions to choose from (such as hd0,0).

By using the tab completion, setting up GRUB should be not that hard. Now go on,
configure GRUB, shall we? :-)

Code listing 3: Installing GRUB in the MBR

77

grub> root (hd0,0) (Specify where your /boot partition resides)
grub> setup (hd0) (Install GRUB in the MBR)
grub> quit (Exit the GRUB shell)

Note: If you want to install GRUB in a certain partition instead of the MBR, you have to alter the setup
command so it points to the right partition. For instance, if you want GRUB installed in /dev/hda3, then the
command becomes setup (hd0,2). Few users however want to do this.

Although GRUB is now installed, we still need to write up a configuration file for it, so that
GRUB automatically boots your newly created kernel. Create /boot/grub/grub.conf
with nano (or, if applicable, another editor):

Code listing 4: Creating /boot/grub/grub.conf

nano -w /boot/grub/grub.conf

Now we are going to write up a grub.conf. Beneath you’ll find two possible grub.conf
for the partitioning example we use in this guide, with kernel image kernel-2.4.25.
We’ve only extensively commented the first grub.conf.

The first grub.conf is for people who have not used genkernel to build their kernel
The second grub.conf is for people who have used genkernel to build their kernel

Code listing 5: grub.conf for non-genkernel users

Which listing to boot as default. 0 is the first, 1 the second etc.
default 0
How many seconds to wait before the default listing is booted.
timeout 30
Nice, fat splash-image to spice things up :)
splashimage=(hd0,0)/grub/splash.xpm.gz

title=Gentoo Linux 2.4.25
Partition where the kernel image (or operating system) is located
root (hd0,0)
kernel (hd0,0)/kernel-2.4.25 root=/dev/hda3

The next three lines are only if you dualboot with a Windows system.
In this case, Windows is hosted on /dev/hda6.
title=Windows XP
root (hd0,5)
chainloader +1

Code listing 6: grub.conf for genkernel users

default 0
timeout 30
splashimage=(hd0,0)/grub/splash.xpm.gz

title=Gentoo Linux 2.4.25
root (hd0,0)
kernel (hd0,0)/kernel-2.4.25 root=/dev/ram0 init=/linuxrc real_root=/dev/hda3
initrd (hd0,0)/initrd-2.4.25

Only in case you want to dual-boot
title=Windows XP
root (hd0,5)
chainloader +1

Note: If you use a different partitioning scheme and/or kernel image, adjust accordingly. However, make sure
that anything that follows a GRUB-device (such as (hd0,0)) is relative to the mountpoint, not the root. In
other words, (hd0,0)/grub/splash.xpm.gz is in reality /boot/grub/splash.xpm.gz since (hd0,0) is
/boot.

If you need to pass any additional options to the kernel, simply add them to the end of the
kernel command. We’re already passing one option (root=/dev/hda3 or
real_root=/dev/hda3), but you can pass others as well. As an example we use the vga
statement for framebuffer we discussed previously:

Code listing 7: Adding the vga-statement as a kernel option

78

title=Gentoo Linux
 root (hd0,0)
 kernel (hd0,0)/kernel-2.4.25 root=/dev/hda3 vga=788

genkernel users should know that their kernels use the same boot options as is used for
the LiveCD. For instance, if you have SCSI devices, you should add doscsi as kernel
option.

Now save the grub.conf file and exit. As of now, GRUB is fully configured, and you can
continue with Installing Necessary System Tools.

9.c. Alternative: Using LILO

Installing LILO

Important: LILO can only be used with x86-based systems!

LILO, the LInuxLOader, is the tried and true workhorse of Linux bootloaders. However, it
lacks some features that GRUB has (which is also the reason why GRUB is currently
gaining popularity). The reason why LILO is still used is that, on some systems, GRUB
doesn’t work and LILO does. Of course, it is also used because some people know LILO
and want to stick with it. Either way, Gentoo supports both, and apparently you have
chosen to use LILO.

Installing LILO is a breeze; just use emerge.

Code listing 8: Installing LILO

emerge lilo

Configuring LILO

To configure LILO, you must create /etc/lilo.conf. Fire up your favorite editor (in this
handbook we use nano for consistency) and create the file.

Code listing 9: Creating /etc/lilo.conf

nano -w /etc/lilo.conf

Some sections ago we have asked you to remember the kernel-image name you have
created. In the next example lilo.conf we assume the imagename is kernel-2.4.25.
We also use the example partitioning scheme in this example. There are two separate
parts:

One for those who have not used genkernel to build their kernel
One for those who have used genkernel to build their kernel

79

Code listing 10: Example /etc/lilo.conf

boot=/dev/hda # Install LILO in the MBR
prompt # Give the user the chance to select another section
delay=50 # Wait 5 (five) seconds before booting the default section
default=gentoo # When the timeout has passed, boot the "gentoo" section
Only if you use framebuffer. Otherwise remove the following line:
vga=788 # Framebuffer setting. Adjust to your own will

For non-genkernel users
image=/boot/kernel-2.4.25
 label=gentoo # Name we give to this section
 read-only # Start with a read-only root. Do not alter!
 root=/dev/hda3 # Location of the root filesystem

For genkernel users
image=/boot/kernel-2.4.25
 label=gentoo
 read-only
 root=/dev/ram0
 append="init=/linuxrc real_root=/dev/hda3"
 initrd=/boot/initrd-2.4.25

The next two lines are only if you dualboot with a Windows system.
In this case, Windows is hosted on /dev/hda6.
other=/dev/hda6
 label=windows

Note: If you use a different partitioning scheme and/or kernel image, adjust accordingly.

If you need to pass any additional options to the kernel, add an append statement to the
section. As an example, we add the acpi=off statement to disable ACPI support:

Code listing 11: Using append to add kernel options

image=/boot/kernel-2.4.25
 label=gentoo
 read-only
 root=/dev/hda3
 append="acpi=off"

genkernel users should know that their kernels use the same boot options as is used for
the LiveCD. For instance, if you have SCSI devices, you should add doscsi as kernel
option.

Now save the file and exit. To finish up, you have to run /sbin/lilo so LILO can apply
the /etc/lilo.conf to your system (i.e. install itself on the disk).

Code listing 12: Finishing the LILO installation

/sbin/lilo

Now continue with Installing Necessary System Tools.

9.d. Alternative: Using aboot

Important: aboot can only be used with alpha-based systems!

We first install aboot on our system. Of course we use emerge to do so:

Code listing 13: Installing aboot

emerge aboot

The next step is to make our bootdisk bootable. This will start aboot when you boot your
system. We make our bootdisk bootable by writing the aboot bootloader to the start of
the disk.

80

Code listing 14: Making your bootdisk bootable

swriteboot -f3 /dev/sda /boot/bootlx
abootconf /dev/sda 2

Note: If you use a different partitioning scheme than the one we use throughout this chapter, you have to
change the commands accordingly. Please read the appropriate manual pages (man 8 swriteboot and man
8 abootconf).

Additionally, you can make Gentoo boot more easily by setting up the aboot configuration
file and SRM boot_osflags variable. You will need to make sure that the bootdef_dev is
also properly set (easier to do at the console than from Linux).

Code listing 15: Improve booting Gentoo

echo ’0:2/boot/vmlinux.gz root=/dev/sda2’ > /etc/aboot.conf
echo -n 0 > /proc/srm_environment/named_variables/boot_osflags
echo -n ’’ > /proc/srm_environment/named_variables/boot_file

If you’re installing using a serial console, don’t forget to include the serial console boot
flag in aboot.conf. See /etc/aboot.conf.example for some further information.
Additionally, you need to allow login on the serial port:

Code listing 16: Allowing login on the serial port

echo tts/0 >> /etc/securetty
echo ’s0:12345:respawn:/sbin/agetty 9600 tts/0 vt100’ >> /etc/inittab

Aboot is now configured and ready to use. Continue with Installing Necessary System
Tools.

9.e. Alternative: Using MILO

Important: MILO can only be used with alpha-based systems!

Before continuing, you should decide on how to use MILO. In this section, we will assume
that you want to make a MILO boot floppy. If you are going to boot from an MS-DOS
partition on your hard disk, you should amend the commands appropriately.

To install MILO, we use emerge.

Code listing 17: Installing MILO

emerge milo

After MILO has been installed, the MILO images should be in /opt/milo. The
commands below make a bootfloppy for use with MILO. Remember to use the correct
image for your Alpha-system.

Code listing 18: Installing MILO on a floppy

(First insert a blank floppy)
fdformat /dev/fd0
mformat a:
mcopy /opt/milo/milo-2.2-18-gentoo-ruffian a:\milo
mcopy /opt/milo/linload.exe a:\lilnload.exe
(Only if you have a Ruffian:
 # mcopy /opt/milo/ldmilo.exe a:\ldmilo.exe
)
echo -ne ’\125\252’ | dd of=/dev/fd0 bs=1 seek=510 count=2

Your MILO boot floppy is now ready to boot Gentoo Linux. You may need to set
environment variables in your ARCS Firmware to get MILO to start; this is all explained in
the MILO-HOWTO with some examples on common systems, and examples of the

81

commands to use in interactive mode.

Not reading the MILO-HOWTO is a bad idea.

Now continue with Installing Necessary System Tools.

9.f. Alternative: Using SILO

It is now time to install and configure SILO, the Sparc Improved boot LOader.

Code listing 19: Installing SILO

emerge silo

Now open up your favorite editor (we use nano as an example) and create
/etc/silo.conf.

Code listing 20: Creating /etc/silo.conf

nano -w /etc/silo.conf

Beneath you find an example silo.conf file. It uses the partitioning scheme we use
throughout this book and kernel-2.4.25 as kernelimage.

Code listing 21: Example /etc/silo.conf

partition = 1 # Boot partition
root = /dev/hda4 # Root partition
timeout = 15 # Wait 15 seconds before booting the default section

image = /boot/kernel-2.4.25
 label = linux

If you use the example silo.conf delivered by Portage, be sure to comment out all lines
that you do not need.

If you have a separate /boot partition, copy over the configuration file to /boot and run
/sbin/silo:

Code listing 22: Only if you have /boot on a separate partition

cp /etc/silo.conf /boot
/sbin/silo -C /boot/silo.conf
/boot/silo.conf appears to be valid

If your /boot directory resides on your root partition, just run /sbin/silo:

Code listing 23: Run silo

/sbin/silo
/etc/silo.conf appears to be valid

Now continue with Installing Necessary System Tools.

9.g. Alternative: Using PALO

Important: PALO can only be used on HPPA-based systems!

On the PA-RISC platform, the boot loader is called palo. You can find the configuration
file in /etc/palo.conf. Here is a sample configuration:

82

Code listing 24: /etc/palo.conf example

--commandline=2/vmlinux root=/dev/sdb2 HOME=/
--recoverykernel=/vmlinux.old
--init-partitioned=/dev/sdb

The first line tells palo the location of the kernel and which boot parameters it must use.
2/vmlinux means the kernel named /vmlinux resides on the second partition. Beware,
the path to the kernel is relative to the partition, not to the root of your filesystem.

The second line indicates which recovery kernel to use. If it is your first install and you do
not have a recovery kernel, please comment this out. The third line indicates on which
disk palo will reside.

When configuration is done, just run palo.

Code listing 25: Applying the PALO configuration

palo

Now continue with Installing Necessary System Tools.

9.h. Alternative: Using yaBoot

Introduction

Important: yaBoot can only be used on NewWorld PPC-based systems!

There are two ways to configure yaBoot for your system. You can use the new and
improved yabootconfig included with yaboot-1.3.8-r1 and later to automatically setup
yaboot. If for some reason you do not want to run yabootconfig to automatically setup
/etc/yaboot.conf, you can just edit the sample file already installed on your system.

Default: Using yabootconfig
Alternative: Manual yaBoot Configuration

Default: Using yabootconfig

yabootconfig will auto-detect the partitions on your machine and will setup dual and
triple boot combinations with Linux, Mac OS, and Mac OS X.

To use yabootconfig, your drive must have a bootstrap partition, and /etc/fstab must
be configured with your Linux partitions. Both of these should have been done already in
the steps above. To start, ensure that you have the latest version of yaboot installed by
running emerge --update yaboot. This is necessary as the latest version will be
available via Portage, but it may not have made it into the stage files.

Code listing 26: Installing yaboot

emerge --update yaboot

Now run yabootconfig. The program will run and it will confirm the location of the
bootstrap partition. Type Y if it is correct. If not, double check /etc/fstab. yabootconfig
will then scan your system setup, create /etc/yaboot.conf and run mkofboot for you.
mkofboot is used to format the bootstrap partition, and install the yaboot configuration file
into it.

You might want to verify the contents of /etc/yaboot.conf. If you make changes to
/etc/yaboot.conf (like setting the default/boot OS), make sure to rerun ybin -v to
apply changes to the bootstrap partition.

Now continue with Installing Necessary System Tools.

83

Alternative: Manual yaBoot Configuration

First make sure you have the latest yaboot installed on your system:

Code listing 27: Installing yaboot

emerge --update yaboot

Below you find a completed yaboot.conf file. Alter it at will:

Code listing 28: /etc/yaboot.conf

/etc/yaboot.conf
##
run: "man yaboot.conf" for details. Do not make changes until you have!!
see also: /usr/share/doc/yaboot/examples for example configurations.
##
For a dual-boot menu, add one or more of:
bsd=/dev/hdaX, macos=/dev/hdaY, macosx=/dev/hdaZ

our bootstrap partition:

boot=/dev/hda9

##hd: is open firmware speak for hda
device=hd:
partition=11

root=/dev/hda11
delay=5
defaultos=macosx
timeout=30
install=/usr/lib/yaboot/yaboot
magicboot=/usr/lib/yaboot/ofboot

#################
This section can be duplicated if you have more than one kernel or set of
boot options
#################
image=/boot/vmlinux
 label=Linux
 sysmap=/boot/System.map
 read-only
##################

macos=/dev/hda13
macosx=/dev/hda12
enablecdboot
enableofboot

Once yaboot.conf is set up the way you want it, you run mkofboot -v to install the
settings in the bootstrap partition. Don’t forget this! If all goes well, and you have the
same options as the sample above, your next reboot will give you a simple, five-entry
boot menu. If you update your yaboot config later on, you’ll just need to run ybin -v to
update the bootstrap partition - mkofboot is for initial setup only.

For more information on yaboot, take a look at the yaboot project. For now, continue the
installation with Installing Necessary System Tools.

9.i. Alternative: BootX

Important: BootX can only be used on OldWorld PPC-based systems!

If you want to use BootX, then you don’t have to do anything at this stage. However, after
rebooting, you will have to some configuration in the BootX control panel (inside MacOS).
We discuss this later in the installation.

For now, continue with Installing Necessary System Tools.

9.j. Alternative: MIPS PROM

84

MIPS doesn’t require that you install a bootloader. The MIPS PROM handles the booting,
but you need to install your kernel as a viable option.

First, install dvhtool, needed to copy the kernel to the SGI Volume Header.

Code listing 29: Installing dvhtool

emerge dvhtool

Now copy over the kernel to the SGI Volume Header. By default dvhtool assumes that
the SGI Volume Header is on /dev/sda. If this is not the case (for instance when IRIX is
installed on /dev/sda and Gentoo/MIPS on /dev/sdb) you need to inform dvhtool
about it using -d <device>.

Code listing 30: Copying a kernel to the SGI Volume Header

dvhtool --unix-to-vh <kernel name in /boot> <name you want to give in volume header>

If you want to see all available entries in the volume, use --print-volume-directory:

Code listing 31: Viewing all available entries in the volume

dvhtool --print-volume-directory

To setup your system to boot Gentoo/MIPS you need to go tweak some settings in the
MIPS PROM. We will describe this later on when the Gentoo installation has finished.

Now continue with Installing Necessary System Tools.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

85

86

10. Installing Necessary System Tools
Content:

System Logger
Optional: Cron Daemon
File System Tools
Optional: Networking Tools

10.a. System Logger

When we mentioned what stage3 was, we said that it contained all necessary system
tools for which we cannot provide a choice to our users. We also said that we would
install the other tools later on. Well, here we are :)

The first tool you need to decide on has to provide logging facilities for your system. Unix
and Linux have an excellent history of logging capabilities -- if you want you can log
everything that happens on your system in logfiles. This happens through the system
logger.

Gentoo offers several system loggers to choose from. There are sysklogd, which is the
traditional set of system logging daemons, msyslog, a flexible system logger with a
modularized design, syslog-ng, an advanced system logger, and metalog which is a
highly-configurable system logger.

If you can’t choose one, use syslog-ng as it is very powerful yet comes with a great
default configuration.

To install the system logger of your choice, emerge it and have it added to the default
runlevel using rc-update. The following example installs syslog-ng. Of course
substitute with your system logger:

Code listing 1: Installing a system logger

emerge syslog-ng
rc-update add syslog-ng default

10.b. Optional: Cron Daemon

Next is the cron daemon. Although it is optional and not required for your system, it is
wise to install one. But what is a cron daemon? A cron daemon executes scheduled
commands. It is very handy if you need to execute some command regularly (for instance
daily, weekly or monthly).

Gentoo offers three possible cron daemons: dcron, fcron and vixie-cron. Installing
one of them is similar to installing a system logger. However, dcron and fcron require an
extra configuration command, namely crontab /etc/crontab. If you don’t know what to
choose, use vixie-cron.

Code listing 2: Installing a cron daemon

emerge vixie-cron
rc-update add vixie-cron default
(Only if you have chosen dcron or fcron) # crontab /etc/crontab

10.c. File System Tools

Depending on what file systems you are using, you need to install the necessary file
system utilities (for checking the filesystem integrity, creating additional file systems etc.).

The following table lists the tools you need to install if you use a certain file system:

87

File System Tool Install Command
XFS xfsprogs emerge xfsprogs

ReiserFS reiserfsprogs emerge reiserfsprogs

JFS jfsutils emerge jfsutils

If you don’t need rp-pppoe to connect to the Internet, continue with Finalizing your
Gentoo Installation. Otherwise continue with Optional: Networking Tools.

10.d. Optional: Networking Tools

If you need rp-pppoe to connect to the net, you need to install it.

Code listing 3: Installing rp-pppoe

USE="-X" emerge rp-pppoe

The USE="-X" will prohibit XFree to be installed as a dependency (rp-pppoe has
graphical tools; if you want those enabled, you can recompile rp-pppoe later on or have
XFree installed now -- which takes a long time to compile).

Now continue with Finalizing your Gentoo Installation.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

88

89

11. Finalizing your Gentoo Installation
Content:

User Administration
Reboot and Enjoy

11.a. User Administration

Setting a root Password

Before you forget, set the root password by typing:

Code listing 1: Setting the root password

passwd

If you want root to be able to log on through the serial console, add ttyS0 to
/etc/securetty.

Code listing 2: Adding ttyS0 to /etc/securetty

echo "ttyS0" >> /etc/securetty

Adding a User for Daily Use

Working as root on a Unix/Linux system is dangerous and should be avoided as much as
possible. Therefore it is strongly recommended to add a user for day-to-day use.

For instance, to create a user called john who is member of the wheel group (be able to
change to root using su), users group (default for all users) and audio group (be able to
use audio devices):

Code listing 3: Adding a user for day-to-day use

useradd john -m -G users,wheel,audio -s /bin/bash
passwd john
Password: (Enter the password for john)
Re-enter password: (Re-enter the password to verify)

If this user ever needs to perform some task as root, he can use su - to temporarily
receive root privileges. Another way is to use the sudo package which is, if correctly
configured, very secure.

11.b. Reboot and Enjoy

Rebooting

Congratulations! Your Gentoo system is now ready. Exit the chrooted environment and
unmount all mounted partitions and, in case you had to bind-mount /mnt/gentoo/dev,
don’t forget to unmount it too. Then type in that one magical command you have been
waiting for: reboot.

Code listing 4: Rebooting the system

exit
cd /
umount /mnt/gentoo/boot /mnt/gentoo/proc /mnt/gentoo
reboot

Of course, don’t forget to remove the bootable CD, otherwise the CD will be booted again
instead of your new Gentoo system.

90

OldWorld PPC users will boot in MacOS since their bootloader isn’t installed yet. Those
users should read Optional: Configuring BootX. MIPS users will have to do some more
tweaking in their MIPS PROM to get Gentoo to work. Those users should read Optional:
Getting Gentoo/MIPS to Work.

GRP users can continue with Optional: Install GRP Packages, all the rest can finish up
with Where to go from here?.

Optional: Configuring BootX

Important: This subsection is only for PPC-users who want to use BootX as bootloader. All other readers
should skip this subsection.

Now your machine is booted in MacOS, open the BootX control panel. Select Options,
and uncheck Used specified RAM disk. When you return to the BootX main screen,
you will now find an option to specify your machine’s root disk and partition. Fill these in
with the appropriate values.

BootX can be configured to start Linux upon boot. If you do this, you will first see your
machine boot into MacOS then, during startup, BootX will load and start Linux. See the
BootX home page for more information.

If you are a GRP users you can continue with Optional: Install Extra Packages, otherwise
go to Where to go from here?.

Optional: Getting Gentoo/MIPS to Work

When you are rebooted, go to the System Maintenance Menu and select Enter
Command Monitor (5). If you want to test your new Gentoo installation, you can just run
boot -f <kernel name>. To have your system permanently boot into the Gentoo
installation, you need to set some variables in the MIPS PROM:

Code listing 5: Configuring the PROM to Boot Gentoo

1) Start System
2) Install System Software
3) Run Diagnostics
4) Recover System
5) Enter Command Monitor

Option? 5
Command Monitor. Type "exit" to return to the menu.

(<root device> = Gentoo’s root partition, e.g. /dev/sda3)
>> setenv OSLoadPartition <root device>

(To list the available kernels, type "ls")
>> setenv OSLoader <kernel name>
>> setenv OSLoadFilename <kernel name>

(Declare the kernel parameters you want to pass)
>> setenv OSLoadOptions <kernel parameters>

(Provide the location of the Volume Header)
>> setenv SystemPartition scsi(0)disk(1)rdisk(0)partition(8)

(Automatically boot Gentoo)
>> setenv AutoLoad Yes

(Set the timezone)
>> setenv TimeZone EST5EDT

(Use the serial console - graphic adapter users should have "g" instead of "d1" (one))
>> setenv console d1

Now you’re ready to enjoy Gentoo!

Optional: Install GRP Packages

Important: This part is for GRP users only. Other users should skip this part and continue with Where to go
from here?.

91

Now that your system is booted, log on as the user you created (for instance, john) and
use su - to gain root privileges:

Code listing 6: Gaining root privileges

$ su -
Password: (Enter your root password)

Now we need to copy over the prebuilt binaries from the second CD (CD-2) if you have it.
First mount this CD:

Code listing 7: Mount the CD-2

mkdir /mnt/cdrom
(Put CD-2 in the CD tray)
mount /mnt/cdrom

Now copy over all prebuilt binaries from the CD to /usr/portage/packages. Make sure
you use the same copy-command!

Code listing 8: Copy over prebuilt binaries

cp /mnt/cdrom/packages/All/* /usr/portage/packages/All/

Now install the packages you want. CD-2 contains several prebuilt binaries, for instance
KDE:

Code listing 9: Installing KDE

USE="bindist" emerge --usepkg kde

The USE="bindist" is needed when you install XFree (either directly or as a
dependency). It prevents the downloading of Microsoft’s core fonts (which we cannot
distribute on our LiveCDs).

Be sure to install the binaries now. When you do an emerge sync to update Portage (as
you will learn later), the prebuilt binaries might not match against the ebuilds in your
updated Portage. You can try to circumvent this by using emerge --usepkgonly instead
of emerge --usepkg.

Congratulations, your system is now fully equiped! Continue with Where to go from here?
to learn more about Gentoo.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

92

93

12. Where to go from here?
Content:

Documentation
Gentoo Online

12.a. Documentation

Congratulations! You now have a working Gentoo system. But where to go from here?
What are your options now? What to explore first? Gentoo provides its users with lots of
possibilities, and therefore lots of documented (and less documented) features.

You should definately take a look at the next part of the Gentoo Handbook entitled
Working with Gentoo which explains how to keep your software up to date, how to install
more software, what USE flags are, how the Gentoo Init system works, etc.

If you are interested in optimizing your system for desktop-use, or you want to learn how
to configure your system to be a full working desktop system, consult our extensive
Desktop Configuration Guide.

For a full listing of all our available documentation check out our Documentation
Resources page.

12.b. Gentoo Online

You are of course always welcome on our Gentoo Forums or on one of our many Gentoo
IRC channels.

We also have several mailinglists open to all our users. Information on how to join is
contained in that page.

We’ll shut up now and let you enjoy your installation :)

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

94

95

2. Working with Gentoo
Learn how to work with Gentoo: installing software, altering variables, changing portage
behaviour etc.

Content:

USE flags
USE-flags are a very important aspect of Gentoo. In this chapter, you learn to work
with USE-flags and understand how USE-flags interact with your system.

1.

Portage and Software
The main reason for portage is to maintain the software on your system. In this
chapter you learn how to get information from a package, update your package
database, install/remove/update software and more...

2.

Portage Features
Gentoo’s Portage allows for several features that improve portage-related aspects,
such as build time. This chapter explains the existing features.

3.

Controlling Portage Behaviour
You can tweak Portage to your own needs/environment. Learn how to protect files,
select mirrors, change directory locations and more.

4.

Initscripts
Gentoo uses a special initscript format which, amongst other features, allows
dependency-driven decisions and virtual initscripts. This chapter explains all these
aspects and explains how to deal with these scripts.

5.

Environment Variables
With Gentoo you can easily manage the environment variables for your system.
This chapter explains how you do that, and also describes frequently used
variables.

6.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

96

97

1. USE flags
Content:

What are USE-flags?
Using USE-flags
Package specific USE-flags

1.a. What are USE-flags?

The ideas behind USE-flags

When you are installing Gentoo (or any other distribution, or even operating system for
that matter) you make choices depending on the environment you are working with. A
setup for a server differs from a setup for a workstation. A gaming workstation differs
from a 3D rendering workstation.

This is not only true for choosing what packages you want to install, but also what
features a certain package should support. If you don’t need OpenGL, why would you
bother installing OpenGL and build OpenGL support in most of your packages? If you
don’t want to use KDE, why would you bother compiling packages with KDE-support if
those packages work flawlessly without?

To help users in deciding what to install/activate and what not, we wanted the user to
specify his environment in an easy way. This forces the user into deciding what he really
wants and eases the process for Portage, our package managment system, to make
useful decisions.

Definition of a USE-flag

Enter the USE-flags. Such a flag is a keyword that embodies support and
dependency-information for a certain concept. If you define a certain USE-flag, Portage
will know that you want support for the chosen keyword. Of course this also alters the
dependency information for a package.

Let us take a look at a specific example: the kde keyword. If you do not have this
keyword in your USE variable, all packages that have optional KDE support will be
compiled without KDE support. All packages that have an optional KDE dependency will
be installed without installing the KDE libraries (as dependency). If you have defined the
kde keyword, then those packages will be compiled with KDE support, and the KDE
libraries will be installed as dependency.

By correctly defining the keywords you will receive a system tailored specifically to your
needs.

What USE-flags exist?

There are two types of USE-flags: global and local USE-flags.

A global USE-flag is used by several packages, system-wide. This is what most
people see as USE-flags.
A local USE-flag is used by a single package to make package-specific decisions.

A list of available global USE-flags can be found online or locally in
/usr/portage/profiles/use.desc. A short (very incomplete) snippet:

Code listing 1: A short snippet of available USE-flags

gtk - Adds support for x11-libs/gtk+ (The GIMP Toolkit)
gtk2 - Use gtk+-2.0.0 over gtk+-1.2 in cases where a program supports both.
gtkhtml - Adds support for gnome-extra/gtkhtml
guile - Adds support for dev-util/guile (interpreter for Scheme)
icc - Use the Intel C++ Compiler if the package supports it
icc-pgo - Enable PGO data generation or use when use icc.
imap - Adds support for IMAP

98

1.b. Using USE-flags

Declare permanent USE-flags

In the hope you are convinced of the importance of USE-flags we will now inform you
how to declare USE-flags.

As previously mentioned, all USE-flags are declared inside the USE variable. To make it
easy for users to search and pick USE-flags, we already provide a default USE setting.
This setting is a collection of USE-flags we think are commonly used by the Gentoo
users. This default setting is declared in the /etc/make.profile/make.defaults file.
Let us take a look at this default setting:

Code listing 2: /etc/make.profile/make.defaults USE variable

USE="x86 oss apm arts avi berkdb crypt cups encode foomaticdb gdbm gif gpm gtk
 imlib jpeg kde gnome libg++ libwww mad mikmod motif mpeg ncurses nls
 oggvorbis opengl pam pdflib png python qt quicktime readline sdl slang
 spell ssl svga tcpd truetype X xml2 xmms xv zlib"

As you can see, this variable already contains quite a lot of keywords. Do not alter the
/etc/make.profile/make.defaults file to tailor the USE variable to your needs:
changes in this file will be undone when you update Portage!

To change this default setting, you need to add or remove keywords to the USE variable.
This is done globally by defining the USE variable in /etc/make.conf. In this variable you
add the extra USE-flags you require, or remove the USE-flags you don’t want. This latter
is done by prefixing the keyword with the minus-sign ("-").

For instance, to remove support for KDE and QT but add support for ldap, the following
USE can be defined in /etc/make.conf:

Code listing 3: An example USE setting in /etc/make.conf

USE="-kde -qt ldap"

Declare temporary USE-flags

Sometimes you want to set a certain USE-setting only once. Instead of editing
/etc/make.conf twice (to do and undo the USE-changes) you can just declare the
USE-variable as environment variable.

As an example we will temporarily remove java from the USE-setting during the
installation of mozilla.

Note: The emerge command will be discussed more thoroughly in Portage and Software.

Code listing 4: Using USE as evironment variable

USE="-java" emerge mozilla

Inheriting USE-flags

Some packages don’t only listen to USE-flags, but also provide USE-flags. When you
install such a package, the USE-flag they provide is added to your USE setting. To view
the list of packages that provide a USE-flag, check /etc/make.profile/use.defaults:

Code listing 5: A snippet from /etc/make.profile/use.defaults

gnome gnome-base/gnome
gtk x11-libs/gtk+
qt x11-libs/qt
kde kde-base/kdebase
motif x11-libs/openmotif

99

Precendence

Of course there is a certain precendence on what setting has priority over the USE
setting. You don’t want to declare USE="-java" only to see that java is declared anyway.
The precedence for the USE setting is, ordered by priority (first has lowest priority):

Default USE setting declared in /etc/make.profile/make.defaults1.
Inherited USE setting if a package from /etc/make.profile/use.defaults is
installed

2.

User-defined USE setting in /etc/make.conf3.
User-defined USE setting as environment variable4.

To view the final USE setting as seen by Portage, run emerge info. This will list all
relevant variables (including the USE variable) with the content used by Portage.

Code listing 6: Running emerge info

emerge info

1.c. Package specific USE-flags

Viewing available USE-flags

In the next chapter on Portage and Software we will explain how to manage your installed
software and how to work with emerge. However, we will give you a primer on emerge by
showing you how to view what USE-flags a package uses.

Let us take the example of mozilla: what USE-flags does it listen to? To find out, we use
emerge with the --pretend (don’t really do anything) and --verbose (give more output)
options:

Code listing 7: Viewing the used USE-flags

emerge --pretend --verbose mozilla
These are the packages that I would merge, in order:

Calculating dependencies ...done!
[ebuild N] net-www/mozilla-1.5-r1 +java +crypt -ipv6 -gtk2 +ssl +ldap
+gnome -debug +mozcalendar -mozaccess -mozxmlterm -moznoirc -moznomail
-moznocompose -moznoxft

emerge isn’t the only tool for this job. In fact, we have a tool dedicated to package
information called etcat which resides in the gentoolkit package. First, install
gentoolkit:

Code listing 8: Installing gentoolkit

emerge --usepkg gentoolkit

Now run etcat with the uses argument to view the USE-flags of a certain package. For
instance, for the gnumeric package:

Code listing 9: Using etcat to view used USE-flags

etcat uses gnumeric
[Colour Code : set unset]
[Legend : (U) Col 1 - Current USE flags]
[: (I) Col 2 - Installed With USE flags]

 U I [Found these USE variables in : app-office/gnumeric-1.2.0]
 - - libgda : Adds GNU Data Access (CORBA wrapper) support for gnumeric
 - - gnomedb : unknown
 + + python : Adds support/bindings for the Python language
 + + bonobo : Adds support for gnome-base/bonobo (Gnome CORBA interfaces)

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

100

101

2. Portage and Software
Content:

Obtaining Package Information
Updating Portage
Maintaining Software
Software Availability

2.a. Obtaining Package Information

The Lord of All Tools: emerge

The main Portage tool that most users will use is emerge. We have already used it during
the Gentoo installation and in the previous chapter, but we just briefly explained how to
use it. This chapter will elaborate on emerge and teach you how to use emerge to fix all
your software-related needs.

emerge is the command used to install, remove, query and maintain software packages.
It is a front-end for ebuild; people interested in becoming Gentoo professionals will learn
how to use ebuild later on. For now, we will focus on emerge as it has functionality that
ebuild lacks (such as resolving dependencies, searching the Portage tree, etc.).

Since emerge is the most important tool for Gentoo users, it has an extensive manpage
you can read by issuing man emerge. You can also view the in-command help by running
emerge --help.

Code listing 1: Retrieving help for emerge

man emerge
emerge --help

The Portage Tree

Before we continue describing emerge, let us first take a look at the Portage Tree. Go to
/usr/portage and do a listing of the available directories. We use ls --classify to list
the contents of a directory as it will show directories with a trailing "/".

102

Code listing 2: Viewing the Portage Tree

cd /usr/portage; ls --classify
app-admin/ dev-ml/ gnome-libs/ net-print/
app-arch/ dev-perl/ gnome-office/ net-wireless/
app-benchmarks/ dev-php/ header.txt net-www/
app-cdr/ dev-python/ incoming/ net-zope/
app-crypt/ dev-ruby/ jython/ packages/
app-dicts/ dev-tcltk/ kde-apps/ profiles/
app-doc/ dev-tex/ kde-base/ releases/
app-editors/ dev-util/ kde-i18n/ scripts/
app-emacs/ distfiles/ kde-libs/ sec-policy/
app-emulation/ eclass/ licenses/ skel.ChangeLog
app-games/ experimental/ media-fonts/ skel.ebuild
app-gnustep/ files/ media-gfx/ skel.metadata.xml
app-i18n/ fresco-base/ media-libs/ snapshots/
app-misc/ games-action/ media-plugins/ sys-apps/
app-office/ games-arcade/ media-radio/ sys-build/
app-pda/ games-board/ media-sound/ sys-cluster/
app-portage/ games-emulation/ media-tv/ sys-devel/
app-sci/ games-engines/ media-video/ sys-fs/
app-shells/ games-fps/ metadata/ sys-kernel/
app-text/ games-kids/ net-analyzer/ sys-kmods/
app-vim/ games-misc/ net-apache/ sys-libs/
app-xemacs/ games-mud/ net-dialup/ unix2tcp/
berlin-base/ games-puzzle/ net-dns/ x11-base/
dev-ada/ games-roguelike/ net-firewall/ x11-libs/
dev-cpp/ games-rpg/ net-fs/ x11-misc/
dev-db/ games-server/ net-ftp/ x11-plugins/
dev-dotnet/ games-simulation/ net-im/ x11-terms/
dev-embedded/ games-sports/ net-irc/ x11-themes/
dev-games/ games-strategy/ net-libs/ x11-wm/
dev-haskell/ games-util/ net-mail/ xfce-base/
dev-java/ glep/ net-misc/ xfce-extra/
dev-lang/ gnome-apps/ net-nds/
dev-libs/ gnome-base/ net-news/
dev-lisp/ gnome-extra/ net-p2p/

As you can see, the Portage tree has several subdirectories. Most of them are the
categories in which the Gentoo packages, called ebuilds, reside. Take a look at, for
instance, app-office:

Code listing 3: Viewing a category

cd app-office; ls --classify
abiword/ gnotime/ kmymoney2/ ooodi/ plan/ timestamp.x
dia/ gnucash/ koffice/ oooqs/ qhacc/
dia2code/ gnumeric/ lxbank/ openoffice/ sc/
facturalux/ ical/ lyx/ openoffice-bin/ scribus/
gaby/ kbudget/ mdbtools/ openoffice-ximian/ siag/
gnofin/ khacc/ mrproject/ phprojekt/ texmacs/

Inside a category you will find the packages belonging to that category, with a separate
directory for each package. Let us take a look at the openoffice package:

Code listing 4: Viewing a package

cd openoffice; ls --classify
ChangeLog files/ openoffice-1.0.3-r1.ebuild openoffice-1.1.0-r2.ebuild
Manifest metadata.xml openoffice-1.1.0-r1.ebuild openoffice-1.1.0.ebuild

Remember that we told you that a Gentoo package is called an ebuild? Well, in the
example directory four of such ebuilds are stored. Their naming is almost identical: they
only differ in the version name. You are free to view the contents of such a package: they
are plain scripts. We will not discuss it right now as it isn’t important to know if you plan
on just using Gentoo.

The other files are the ChangeLog (which contains a listing of all the changes done to the
ebuilds), Manifest (which contains the checksums and filesizes of all the files in the
directory) and metadata.xml (which contains more information about the package, such
as the responsible development group -- called herd -- and a more extensive description).

Inside the files directory you will find extra files, needed by Portage: digests
(checksums and permissions of the files needed by a single version of the package),
patches, example configuration files, etc.

103

Code listing 5: Viewing the extra files

cd files; ls --classify
1.0.3/ digest-openoffice-1.0.3-r1 digest-openoffice-1.1.0-r1
1.1.0/ digest-openoffice-1.1.0 digest-openoffice-1.1.0-r2
cd 1.1.0; ls --classify
fixed-gcc.patch ooffice-wrapper-1.3
newstlportfix.patch openoffice-1.1.0-linux-2.6-fix.patch
no-mozab.patch openoffice-1.1.0-sparc64-fix.patch
nptl.patch

If you go back to the root of the Portage tree (/usr/portage) you will notice that there
are other, non-category directories too. We will discuss those later in this chapter.

Search for a Package

If you are new to Linux or Gentoo, you might not know what tool you need for what job.
To facilitate searching, emerge provides you with a way to search through the available
packages on your system. There are two ways you can search through packages: by
name, or by name and description.

To search through the Portage tree by name, use emerge search. For instance, to find
out more about mozilla:

Code listing 6: Showing information about mozilla

emerge search mozilla
Searching...
[Results for search key : mozilla]
[Applications found : 5]
(Some output removed to improve readability)
* net-www/mozilla
 Latest version available: 1.5-r1
 Latest version installed: 1.4-r3
 Size of downloaded files: 29,153 kB
 Homepage: http://www.mozilla.org
 Description: The Mozilla Web Browser

* net-www/mozilla-firebird
 Latest version available: 0.7
 Latest version installed: [Not Installed]
 Size of downloaded files: 37,850 kB
 Homepage: http://www.mozilla.org/projects/firebird/
 Description: The Mozilla Firebird Web Browser
(...)

If you want to include a search through the descriptions too, use the --searchdesc
argument:

Code listing 7: Search through the descriptions too

emerge --searchdesc mozilla
Searching...
[Results for search key : mozilla]
[Applications found : 10]
(Some output removed to improve readability)
* dev-libs/nss-3.8
 Latest version available: 3.8
 Latest version installed: 3.8
 Size of downloaded files: 2,782 kB
 Homepage: http://www.mozilla.org/projects/security/pki/nss/
 Description: Mozilla’s Netscape Security Services Library that implements PKI support

As you can see, the output of emerge informs you about the category and name of the
package, the available version, the currently installed version, the size of the downloaded
files, the homepage and the small description.

You see something new? Yes, downloaded files. When you tell Portage to install a
package, it of course needs to have the necessary sources (or precompiled packages)
available. It therefore checks the contents of /usr/portage/distfiles (for source code)
or /usr/portage/packages/All (for precompiled packages) to see if the necessary files
are already available. If not, it downloads the necessary files and places them in those
directories.

104

Viewing the ChangeLog

While browsing through the Portage Tree, you saw that there was a ChangeLog for each
package. You can view the ChangeLog entries between the available version and the
installed version with emerge too. Use the --pretend --changelog (-pl in short)
options. As an example we will view the ChangeLog entries for gnumeric:

Code listing 8: Viewing the ChangeLog entries for gnumeric

emerge --pretend --changelog gnumeric
(Some output removed to improve readability)
*gnumeric-1.2.2

 27 Nov 2003; foser <foser@gentoo.org> gnumeric-1.2.2.ebuild :
 New release, requested in #34492
 updated deps

 12 Nov 2003; Jason Wever <weeve@gentoo.org> gnumeric-1.2.0.ebuild:
 Marked stable on sparc, fixes bug #32405.

 14 Oct 2003; Jason Wever <weeve@gentoo.org> gnumeric-1.0.8.ebuild:
 Added ~sparc keyword. Fixes bug #31150.

2.b. Updating Portage

Introduction

Searching through Portage is nice, but if you don’t update your Portage Tree regularly,
you will be stuck with the packages and versions available on your system. This means
that your system will get outdated pretty soon and that you will be missing bugfixes and
remedies for possible security problems.

There are several ways to update your Portage Tree. The most popular method is by
using one of our rsync mirrors. Another one is by using a Portage snapshot (in case a
firewall or unavailability of a network prohibits the use of the rsync server).

Selecting a Mirror for rsync

It is adviseable to first select a fast mirror close to you. You can do this manually (by
setting the SYNC variable in /etc/make.conf) or use mirrorselect to do this for you
automatically. As the SYNC variable will be discussed later on, we will focus on using
mirrorselect. First install mirrorselect by emerging it:

Code listing 9: Installing mirrorselect

emerge --usepkg mirrorselect

Now run mirrorselect to automatically select mirrors for you (it will also setup Portage
to use a mirror for the source code):

Code listing 10: Running mirrorselect

mirrorselect -a -s3

Updating Portage

To update Portage using rsync, simply run emerge sync:

Code listing 11: Updating Portage using emerge sync

emerge sync

If this fails (due to network problems, or a firewall), you can try using emerge-webrsync
which will download a Portage Tree snapshot using wget. This also means that you can
use proxies if you want. We discussed how to setup your system to use proxies during
the Gentoo installation.

105

Code listing 12: Updating Portage using emerge-webrsync

emerge-webrsync

2.c. Maintaining Software

Building or Prebuilt?

Gentoo provides ebuilds, the Gentoo packages if you like. But when you want to install
such an ebuild, you can choose between building the package and using a prebuilt
package. But what are the advantages/disadvantages of both approaches, and can they
be used next to each other?

As you probably have guessed, building packages takes a lot of time (especially if you
have little resources or want to build big packages, such as KDE, OpenOffice.org, etc.).
By building the package, you can use the USE setting to tweak the package to your
system. Of course, you can also define high optimization options (in the CFLAGS and
CXXFLAGS variables) to compile the package with.

Using prebuilt packages improves the installation time (as no more compilation is
needed), but you will lose the advantages of the USE setting and the CFLAGS & CXXFLAGS
variables.

As previously stated, prebuilt packages are stored in the /usr/portage/packages/All
directory, while the source code of the packages is placed in /usr/portage/distfiles.
If you have finished installing a package you can remove the package or source code
from the respective directory. However, you might want to keep the package/source code
of the latest version, just in case you want to reinstall the package (so you don’t have to
redownload it).

Installing Software from Sources

Okay, enough talking, let’s cut to the chase. To install a package, you will use the emerge
command. If you don’t want to use any prebuilt packages, you can just use emerge
<package-name> or emerge <category>/<package-name>. As an example we’ll install
gnumeric:

Code listing 13: Building gnumeric

emerge gnumeric

This will download the source code for you and unpacks, compiles and installs the
package on your system. It will also do the same for all the dependencies. If you want to
see what dependencies will be installed with it, use the --pretend option (-p in short):

Code listing 14: Pretending to build gnumeric

emerge --pretend gnumeric

If you want to download the source code of the package and its dependencies, but don’t
want to build the package, use the --fetchonly option (-f in short):

Code listing 15: Fetching sources for gnumeric

emerge --fetchonly gnumeric

If you want to see where emerge downloads the sources from, combine the --fetchonly
and --pretend options:

Code listing 16: Showing URLs of the sources for gnumeric

emerge --fetchonly --pretend gnumeric

106

You can also opt to install a specific version of a package. For instance, if you want to
install a gnumeric version older than 1.2 -- for any reason whatsoever :) you would type:

Code listing 17: Installing a specific gnumeric version

emerge "<gnumeric-1.2"

Other possibilities are of course ">" (later version) and "=" (the exact version).

Installing Prebuilt Packages

When you want to install a prebuilt package, you should use the --usepkg option (-k in
short). This will use the binary package available in /usr/portage/packages/All if the
package and the version of the application you want to install match.

Code listing 18: Installing a prebuilt package for gnumeric

emerge --usepkg gnumeric

If you want to use the binary package, even if the versions don’t match, use
--usepkgonly (-K in short).

Code listing 19: Installing the prebuilt package for gnumeric

emerge --usepkgonly gnumeric

If you don’t have the prebuilt package on your system yet, you can have emerge
download it from a mirror, defined in the PORTAGE_BINHOST variable declared in
/etc/make.conf.

To download the binary package in case this package doesn’t exist on your system
already, use --getbinpkg (-g in short):

Code listing 20: Downloading and installing a prebuilt package for gnumeric

emerge --getbinpkg gnumeric

This will download the package and the package-related information for you and install it
on your system, together with the dependencies. If you want to see what dependencies
will be installed with it, use the --pretend option (-p in short):

Code listing 21: Pretending to download the prebuilt packages for gnumeric

emerge --getbinpkg --pretend gnumeric

You can also opt to download the prebuilt package (and the package-related information)
without checking the information on your local system and without using the prebuilt
package already on your system (if applicable), use the --getbinpkgonly option (-G in
short):

Code listing 22: Installing a prebuilt package without using local information

emerge --getbinpkgonly gnumeric

You can also opt to install a specific version of a package. For instance, if you want to
install a gnumeric version older than 1.2 -- for any reason whatsoever :) you would type:

Code listing 23: Installing a specific gnumeric version

emerge --usepkg "<gnumeric-1.2"

Other possibilities are of course ">" (later version) and "=" (the exact version).

107

Working with Dependencies

Portage has an extensive support for dependency handling. Although you usually don’t
need to even think about this (as dependencies are automatically handled by Portage)
some users might want to know how you can work with emerge and dependencies.

For instance, if you want Portage to pretend that none of the dependencies of a package
are installed, you can use --emptytree (-e in short). This is useful with --pretend to
display a complete tree of dependencies for any particular package. Without --pretend,
emerge will (re)compile all listed packages. However, glibc will not be listed as
dependency for safety reasons.

Code listing 24: Show all dependencies of gnumeric

emerge --emptytree --pretend gnumeric

Another argument is --nodeps, which will ask Portage to try install the given package
without taking care of the dependencies. It is trivial that this can lead to failures.

Code listing 25: Installing gnumeric without taking care of the dependencies

emerge --nodeps gnumeric

The opposite of --nodeps is --onlydeps, which will have Portage install all
dependencies of a given package, but not the package itself:

Code listing 26: Installing the dependencies of gnumeric

emerge --onlydeps gnumeric

Updating your System

Portage knows two special tags to denote a set of software packages: system and world.
You have already seen the former while installing Gentoo if you didn’t use a stage3
installation. To refresh things: system is the collection of core packages, necessary to
have a working Gentoo system.

The world tag consists of all software you have installed yourself on your system plus the
system information. In other words, every time you emerge a package using emerge
<package-name>, the <package-name> is registered in the world file
(/var/cache/edb/world). Dependencies are not part of the world file, but we will get to
that later.

If you want to update the system packages, use the --update option (-u in short):

Code listing 27: Updating the system packages

emerge --update system

An identical approach can be used for the world packages:

Code listing 28: Updating your entire system

emerge --update world

Again, if you want to see what emerge wants to update, use the --pretend option
together with the --update option:

Code listing 29: Pretending to update your entire system

emerge --pretend --update world
(Some output removed to improve readability)
[ebuild U] net-misc/wget-1.9-r1 [1.9]
[ebuild UD] media-video/dvdauthor-0.5.0 [0.5.3]
[ebuild U] net-analyzer/ethereal-0.9.16 [0.9.14]

Right next to the word "ebuild" you will notice a letter (or combination of letters) which
gives you more information about the package:

108

B (blocks) The package listed to the left is blocking the emerge of the package
listed to the right
N (new) The package is new to your system and will be emerged for the first time
R (reemerge) The package isn’t new, but needs to be reemerged
F (fetch) The package requires that you download the source code manually (for
instance due to licencing issues)
U (update) The package already exists on your system but will be upgraded
UD (downgrade) The package already exists on your system but will be
downgraded
U- (slot warning) The package you have installed on your system is listed as a
package that can not coexist with a different version, but your update does. The
update will be installed and the older version will be removed.

In certain cases, an update may mean a downgrade (i.e. install an older version instead
of a newer version). If you don’t want this to happen, use the --upgradeonly option (-U
in short):

Code listing 30: Upgrading your entire system

emerge --update --upgradeonly world

Of course, we are talking here about system and world, but you can perform the same
actions for individual software packages.

Removing Software

If you want to remove software from your system, you can use the unmerge option (-C -
capital C - in short):

Code listing 31: Uninstalling software

emerge unmerge gnumeric

If you want to test a removal (but not perform it), you can use --pretend again:

Code listing 32: Pretending to uninstall software

emerge --pretend unmerge gnumeric

Warning: Portage doesn’t verify if a package is a dependency for another installed package. It also doesn’t
warn you if the package is part of system, i.e. a core application necessary for the correct functioning of your
system!

Once the unmerge begins you will see a long list of filenames belonging to the package.
Some of these filenames will have a flag displayed to the left of the filename. The flags
!mtime, !empty, and cfgpro specify reasons why certain files are not being removed
while the package is. Files listed without any of these three flags are removed from the
filesystem successfully. The three flags specify the following reasons:

!mtime : The listed file has been changed since it was installed, probably by you or
some tool
!empty : The listed directory is not empty
cfgpro : This file is located inside a protected directory and will not be touched for
safety

2.d. Software Availability

ARCH or not?

Gentoo places its packages in two possible stadia called ARCH and ~ARCH. Don’t take
this literally: the stadia depend on the architecture you are using. In other words, for
x86-based systems you have x86 and ~x86, for ppc-based systems you have ppc and
~ppc etc.

109

The ~ARCH stadium means that the package works for the developer in charge of the
package, but that the package hasn’t been tested thoroughly enough by the community
to be placed in ARCH. ~ARCH packages usually go to ARCH after being bugfree for a
sufficient amount of time.

Your system will use ARCH packages per default. If you want to live on the edge, don’t
mind having a broken package once in a while, know how to deal with a broken system
and you like submitting bugreports to bugs.gentoo.org, then you can opt to use ~ARCH
packages. To "move" your system to a ~ARCH-using system, edit the ACCEPT_KEYWORDS
variable in /etc/make.conf so that it reads ~ARCH (again: for x86-based systems:
~x86, etc.).

Note though that it is far from trivial (if even impossible) to go back to ARCH from
~ARCH.

If you want to update your system now, you will notice that a lot of packages will be
updated!

Masked Packages

When you want to install a package, you might come across the following message:

Code listing 33: Message about masked packages

Calculating dependencies
!!! all ebuilds that could satisfy <your package> have been masked.

A package can be masked due to two reasons:

The package is in ~ARCH while you use ARCH1.
The package is hard-masked explicitly2.

If the package is masked because of the first reason, and you really want to install it
(knowing that there is a reason why it isn’t available in ARCH), you can temporarily
accept ~ARCH packages:

Code listing 34: Temporarily accepting ~ARCH packages

ACCEPT_KEYWORDS="~x86" emerge gnumeric

A package is hardmasked if it is listed in /usr/portage/profiles/package.mask. If you
read this file, you will also read the reason why the package is hardmasked (it is usually
added as a comment). If you want to install the package nevertheless (despite all the
possible warnings we could ever throw at your head about "breaking your system",
"breaks other packages", or "badly needs testing"), create the
/etc/portage/package.unmask file and list the package in it (use the same format as is
used in /usr/portage/profiles/package.mask).

Do not alter the /usr/portage/profiles/package.mask file as all changes are undone
the next time you update your Portage tree. If you want to hardmask a package create
/etc/portage/package.mask and list the package in it (use the same format as
mentioned above).

Blocked Packages

You have a situation when you receive the following error on your screen:

Code listing 35: Blocking package

[blocks B] gnome-base/bonobo-activation (from pkg gnome-base/libbonobo-2.4.0)

In the above example, the package bonobo-activation is blocking the emerge of
libbonobo. To resolve this issue, remove the bonobo-activation package and
continue:

110

Code listing 36: Resolving a blocking situation

emerge unmerge bonobo-activation

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

111

112

3. Portage Features
Content:

DistCC
ccache
Binary Packages
Security Related Features
Other Features

3.a. DistCC

What is DistCC?

distcc is a program to distribute compilations across several, not necessarily identical,
machines on a network. The distcc client sends all necessary information to the
available DistCC servers (running distccd) so they can compile pieces of source code
for the client. The net result is a faster compilation time.

You can find more elaborate information about distcc (and information on how to have it
work with Gentoo) in our Gentoo Distcc Documentation.

Installing DistCC

Distcc ships with a graphical monitor to monitor tasks that your computer is sending away
for compilation. If you use Gnome then put ’gnome’ in your USE setting. However, if you
don’t use Gnome and would still like to have the monitor then you should put ’gtk’ in your
USE setting.

Installing distcc is, as is with all software available through Gentoo’s Portage, extremely
easy:

Note: From now on, as you now know how to install binary packages if you want, we will omit the --usepkg
option throughout the rest of the Gentoo Handbook.

Code listing 1: Installing Distcc

emerge distcc

Activating Portage Support

Well, if installation is easy, the rest should be easy too :) So let us quickly activate the
Portage support for distcc.

First, open /etc/make.conf and edit the FEATURES variable so it contains the distcc
keyword. Next, edit the MAKEOPTS variable so it reads -jX with X the number of CPUs that
run distccd (including the current host) plus one:

Code listing 2: Possible MAKEOPTS setting in /etc/make.conf

Suppose you have 2 single-CPU distccd hosts excluding this host:
MAKEOPTS="-j4"

Now, still inside /etc/make.conf, uncomment the PORTAGE_TMPDIR line and add the
following line at the end of the file:

Code listing 3: Add an extra, distcc-specific variable to /etc/make.conf

Don’t forget to uncomment the PORTAGE_TMPDIR variable
DISTCC_DIR=${PORTAGE_TMPDIR}/portage/.distcc

Now run distcc-config and enter the list of available DistCC servers. For a simple

113

example we assume that the available DistCC servers are 192.168.1.102 (the current
host), 192.168.1.103 and 192.168.1.104 (two "remote" hosts):

Code listing 4: Configuring distcc to use three available DistCC servers

distcc-config --set-hosts "192.168.1.102 192.168.1.103 192.168.1.104"

Of course, don’t forget to run the distccd daemon too:

Code listing 5: Starting the distcc daemon

/etc/init.d/distccd start

Congratulations, your system will now use distributed compiling! For more in-depth
information about DistCC and Gentoo, please read our Gentoo DistCC Documentation.

3.b. ccache

What is ccache?

ccache is a fast compiler cache. When you compile a program, it will cache intermediate
results so that, when you ever recompile the same program, the compilation time is
greatly reduced. In common compilations this can result in 5 to 10 times faster
compilation times.

If you are interested in the ins and outs of ccache, please visit the ccache homepage.

Installing ccache

Installing ccache with Gentoo is a breeze. Just emerge it and you’re done :)

Code listing 6: Installing ccache

emerge ccache

Activating Portage Support

First, edit /etc/make.conf and alter the FEATURES variable so that it contains the ccache
keyword:

Code listing 7: Editing FEATURES in /etc/make.conf

FEATURES="ccache"

Next, edit (or create) the CCACHE_SIZE variable (also in /etc/make.conf) so it contains
the amount of diskspace you want to sacrifice for ccache:

Code listing 8: Editing CCACHE_SIZE in /etc/make.conf

CCACHE_SIZE="2G"

As of now, Portage will use ccache to speed up compilations where possible. If you are
uncertain that ccache works, you can run ccache -s to view the ccache statistics:

Code listing 9: Viewing ccache statistics

ccache -s

3.c. Binary Packages

Creating binary packages

114

We have already discussed how to work with prebuilt packages, but how do you create
your own prebuilt packages?

If the package is already installed, you can use the quickpkg command which will make
a tarball of the installed files. This is very interesting for backup purposes!

Code listing 10: Using quickpkg

quickpkg gnumeric

If the package isn’t installed yet, you can install it using emerge and ask to build a binary
package too. emerge uses the --buildpkg option (-b in short) for this:

Code listing 11: Installing gnumeric and building binary packages too

emerge --buildpkg gnumeric

If you want Portage to do this by default, you should set the buildpkg keyword in the
FEATURES variable declared in /etc/make.conf.

Code listing 12: Automatically creating binary packages

FEATURES="buildpkg"

If you don’t want to install the software, but only build the package, you can use the
--buildpkgonly option (-B in short):

Code listing 13: Building a binary package for gnumeric

emerge --buildpkgonly gnumeric

3.d. Security Related Features

Sandbox

While building and installing packages, Portage uses a sandbox to protect your live
system. This means that, as long as the package isn’t installed on your system, the
package cannot touch any file outside the sandbox. This ensures that Portage knows
what files are created and modified by a package.

When the package compilation is finished, Portage will "preinstall" the package in the
sandbox, registering what files are placed and where. It will then move those files from
the sandbox on your live system.

User Privileges

Portage also supports building packages as non-root user (more precisely, as user
"portage", group "portage"). This improves the security during the build process. You can
opt to use user privileges with or without sandboxing. Of course, it goes without saying
that user privileges and sandboxing is the most preferred method :)

Activating sandbox and/or userpriv

Portage will use sandbox per default. If you want userpriv, you should add it to the
FEATURES variable. Note that activating userpriv will drop sandbox support, unless you
also activate usersandbox:

Code listing 14: Activating userpriv and usersandbox

FEATURES="userpriv usersandbox"

Warning: Do not remove sandbox from the FEATURES variable!

115

Strict Checking

Portage can be asked to react strongly to possibly dangerous conditions (such as
missing or incorrect Manifest files). To activate this strict checking, add the strict
keyword to the FEATURES variable:

Code listing 15: Activating strict checking

FEATURES="strict"

Smart File System Permissions

Portage can be told to automatically deal with potentially dangerous file permissions that
could pose a security risk. It does this by removing the "group" and "other" readable bits
on setuid files and removing the "other" readable bit on setgid files in the pre install
phase. To activate the smart file permissions, add the sfperms keyword to the FEATURES
variable:

Code listing 16: Activating smart file system permissions

FEATURES="sfperms"

3.e. Other Features

Portage Help

There are several other keywords you can place in the FEATURES variable. Most of them
are targeted towards developers and less interesting for the casual user. If you are
interested in learning more about these features (or Portage generally), don’t forget to
read the make.conf manpage we provide.

Code listing 17: More Portage-related information

man make.conf

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

116

117

4. Controlling Portage Behaviour
Content:

Configuration File Protection
Networking Options
Directory Locations
Other Portage Options
Resources

4.a. Configuration File Protection

Protecting?

Portage knows the concept of "protected files". This means that, when you update
software, it will not immediately overwrite certain files with newer versions, but inform you
that a newer version exists. This is of course very usefull for configuration files (the files
that reside in /etc).

Instead of overwriting such files, it will create a new file called ._cfg0000_<name> with
<name> being the original file name. It is then up to the user to merge the necessary
differences in the existing file. He can use the etc-update command to ease this
operation. We will talk about etc-update later.

Declaring CONFIG_PROTECT

Portage cannot protect on a file per file basis. Instead it protects entire directories. The
CONFIG_PROTECT variable lists all protected directories. All subdirectories of the listed
directories are protected too. The CONFIG_PROTECT variable is defined in
/etc/make.globals, but if you want to change it, you should declare it in
/etc/make.conf (to keep things consistent /etc/make.conf is used for all Portage
configuration).

Code listing 1: An example CONFIG_PROTECT setting

CONFIG_PROTECT="/etc /usr/share/config /usr/kde/3.1/share/config"

If you want a certain directory protected, but not all of its subdirectories, you can
"unprotect" these directories by listing them in the CONFIG_PROTECT_MASK variable, which
also has a default value defined in /etc/make.globals but should be altered by
declaring it in /etc/make.conf:

Code listing 2: An example CONFIG_PROTECT_MASK setting

CONFIG_PROTECT_MASK="/etc/init.d"

More information about the Configuration File Protection can be found in emerge’s online
help:

Code listing 3: Getting information about Configuration File Protection

emerge --help config

etc-update

etc-update is a tool that aids in merging the ._cfg0000_<name> files. It provides an
interactive merging setup and can also auto-merge trivial changes.

Running etc-update is pretty straight-forward:

Code listing 4: Running etc-update

118

etc-update

After merging the trivial changes, you will be prompted with a list of protected files that
have an update waiting. At the bottom you are greeted by the possible options:

Code listing 5: etc-update options

Please select a file to edit by entering the corresponding number.
 (-1 to exit) (-3 to auto merge all remaining files)
 (-5 to auto-merge AND not use ’mv -i’):

If you enter -1, etc-update will exit without performing any changes. If you enter -3 or
-5, all listed configuration files will be overwritten with the newer versions. It is therefore
very important to first select the configuration files that should not be automatically
updated. This is as easy as entering the number listed to the left of that configuration file.

As an example, we select the configuration file /etc/pear.conf:

Code listing 6: Updating a specific configuration file

Beginning of differences between /etc/pear.conf and /etc/._cfg0000_pear.conf
[...]
End of differences between /etc/pear.conf and /etc/._cfg0000_pear.conf
1) Replace original with update
2) Delete update, keeping original as is
3) Interactively merge original with update
4) Show differences again

You can now see the differences between the two files. If you believe that the updated
configuration file can be used without problems, enter 1. If you believe that the updated
configuration file isn’t necessary, or doesn’t provide any new or usefull information, enter
2. If you want to interactively update your current configuration file, enter 3.

It is not usefull to elaborate about the interactive merging here. For completeness sake,
we will list the possible commands you can use while you are interactively merging the
two files. You are greeted with two lines (the original one, and the proposed new one)
and a prompt at which you can enter one of the following commands:

Code listing 7: Commands available for the interactive merging

ed: Edit then use both versions, each decorated with a header.
eb: Edit then use both versions.
el: Edit then use the left version.
er: Edit then use the right version.
e: Edit a new version.
l: Use the left version.
r: Use the right version.
s: Silently include common lines.
v: Verbosely include common lines.
q: Quit.

When you have finished updating the important configuration files, you can now
automatically update all the other configuration files. etc-update will exit if it doesn’t find
any more updateable configuration files.

4.b. Networking Options

Mirrors

As Gentoo is becoming increasingly popular, the use of mirrors is greatly appreciated.
Portage uses three variables for the mirrors: one for the rsync mirrors (which is used to
synchronise your Portage Tree with), one for the distfiles (which is used to download the
source code) and one for the prebuilt packages.

All possible distfiles mirrors are listed on our Gentoo mirrors page. You can also use
mirrorselect which will ease the setup of mirrors for your system. But let us first check
out the individual variables...

119

The SYNC variable contains a list of rsync-mirrors you wish to use. For instance, to use
rsync://rsync.namerica.gentoo.org/gentoo-portage as first choice, and
rsync://rsync.samerica.gentoo.org/gentoo-portage as second, you would define this in
/etc/make.conf:

Code listing 8: Defining SYNC in /etc/make.conf

SYNC="rsync://rsync.namerica.gentoo.org/gentoo-portage
 rsync://rsync.samerica.gentoo.org/gentoo-portage"

The GENTOO_MIRRORS variable contains a list of distfiles mirrors you wish to use. For
instance, to use ftp://ibiblio.org/pub/Linux/distributions/gentoo as first choice, and
http://www.gtlib.cc.gatech.edu/pub/gentoo as second, you would define this in
/etc/make.conf:

Code listing 9: Defining GENTOO_MIRRORS in /etc/make.conf

GENTOO_MIRRORS="ftp://ibiblio.org/pub/Linux/distributions/gentoo
 http://www.gtlib.cc.gatech.edu/pub/gentoo"

The PORTAGE_BINHOST variable contains a list of prebuilt package mirrors you wish to
use. For instance, to use ftp://login:pass@grp.mirror.site/pub/grp/i686/athlon-xp, you
would define this in /etc/make.conf:

Code listing 10: Defining PORTAGE_BINHOST in /etc/make.conf

PORTAGE_BINHOST="ftp://login:pass@grp.mirror.site/pub/grp/i686/athlon-xp"

Mirrorselect

If you want to use mirrorselect, first install it (if you haven’t done so already).

Code listing 11: Installing mirrorselect

emerge mirrorselect

You can now opt to have mirrorselect automatically select the best mirrors for you, or
select the mirrors manually from a list. For more information on how to use
mirrorselect, just run mirrorselect from the command line - it will give you a quick
overview on mirrorselect.

Code listing 12: Running mirrorselect

mirrorselect

Fetching

The program which Portage uses to download archive files can be specified by setting
the FETCHCOMMAND and RESUMECOMMAND settings. Several examples are shown in
/etc/make.conf and /etc/make.globals. Portage uses wget by default:

Code listing 13: Default FETCHCOMMAND & RESUMECOMMAND

FETCHCOMMAND="/usr/bin/wget -t 5 --passive-ftp -P \${DISTDIR} \${URI}"
RESUMECOMMAND="/usr/bin/wget -c -t 5 --passive-ftp -P \${DISTDIR} \${URI}"

The ${DISTDIR} variable is substituted with the location where downloaded files are
saved (/usr/portage/distfiles), while the ${URI} variable is substituted with the file
that Portage needs to download.

As Portage uses wget by default, you can configure it to use proxies by defining
http_proxy and ftp_proxy (note the small caps). Although you can do this in
/etc/make.conf too, you are advised to use a more general approach as the

120

http_proxy and ftp_proxy variables are used by other tools too (/etc/make.conf is
used by Portage only). Please read the chapter on Environment Variables on how to
declare system-wide environment variables.

Configuring rsync

rsync is used by emerge sync to update your Portage tree. Three variables used by
Portage to change rsync’s behaviour are RSYNC_EXCLUDEFROM, RSYNC_RETRIES and
RSYNC_TIMEOUT.

A way to "protect" ebuilds from being updated or removed by emerge sync is to use the
RSYNC_EXCLUDEFROM variable. It should be set to a file that is used by rsync to exclude
certain files and defaults to /etc/portage/rsync_excludes. It is not adviseable to use
this method as it can break dependencies if you are not careful. We will talk about
PORTDIR_OVERLAY later on, which is the recommended method. For more information,
please read the rsync manpage.

Code listing 14: The RSYNC_EXCLUDEFROM variable

RSYNC_EXCLUDEFROM="/etc/portage/rsync_excludes"

When rsync fails, it will retry a number of times before switching to the next available
rsync server. The number of retries is defined in RSYNC_RETRIES and defaults to 3:

Code listing 15: The RSYNC_RETRIES variable

RSYNC_RETRIES="3"

If you are using a (very) slow rsync server, rsync can time-out if no traffic is received
anymore. The amount of seconds to wait before time-out is defined in the
RSYNC_TIMEOUT variable and defaults to 180:

Code listing 16: The RSYNC_TIMEOUT variable

RSYNC_TIMEOUT="180"

4.c. Directory Locations

Introduction

Everything about Portage is configurable, including the directories used for the various
tasks and files needed by Portage. To change the default locations (as defined in
/etc/make.globals) you need to define the correct variables in - where else :) -
/etc/make.conf.

Warning: If you alter a variable to point to a different location, never end the path with a trailing / !

Portage Tree

The location of the Portage tree is defined in the PORTDIR variable. It defaults to
/usr/portage:

Code listing 17: The PORTDIR variable

PORTDIR="/usr/portage"

If you want to keep a local Portage tree next to the "official" one, you need to define the
PORTDIR_OVERLAY variable. The directory location(s) listed in this value are unaffected by
emerge sync actions: ebuilds in those locations will not get updated or removed, but are
part of your Portage tree.

121

Code listing 18: The PORTDIR_OVERLAY variable

PORTDIR_OVERLAY="/usr/local/portage"

Distfiles

The location of the downloaded source code (so called distfiles) is defined in the DISTDIR
variable. It defaults to ${PORTDIR}/distfiles:

Code listing 19: The DISTDIR variable

DISTDIR="${PORTDIR}/distfiles"

Packages and RPMs

The location of the prebuilt packages is defined in the PKGDIR variable. It defaults to
${PORTDIR}/packages:

Code listing 20: The PKGDIR variable

PKGDIR="${PORTDIR}/packages"

The location of the RPMs (yes, some packages are available as RPMs) is defined in the
RPMDIR variable. It defaults to ${PORTDIR}/rpm:

Code listing 21: The RPMDIR variable

RPMDIR="${PORTDIR}/rpm"

Temporary Portage Files

Portage uses a temporary location to build its ebuilds in. This location is defined in the
PORTAGE_TMPDIR variable. It defaults to /var/tmp:

Code listing 22: The PORTAGE_TMPDIR variable

PORTAGE_TMPDIR="/var/tmp"

Per default, Portage will create a portage directory inside PORTAGE_TMPDIR. This is
declared in the BUILD_PREFIX variable:

Code listing 23: The BUILD_PREFIX variable

BUILD_PREFIX="${PORTAGE_TMPDIR}/portage"

If you intend to change the location, make sure this temporary directory is on a partition
with a sufficient amount of free space: when compiling big software packages, the
directory can grow to 2 Gb and beyond!

Logging

The PORT_LOGDIR is a special variable and unset by default. When you define it, Portage
will create per-ebuild logs in the given directory:

Code listing 24: The PORT_LOGDIR variable

PORT_LOGDIR="/var/log/portage"

4.d. Other Portage Options

Nice Value

122

Portage supports building with a different nice-value (a priority-like value). If you want to
have Portage build packages with a higher nice-value (resulting in a more responsive
system during the building process, but which also increases the build time) you can
define the PORTAGE_NICENESS variable with a positive number:

Code listing 25: The PORTAGE_NICENESS variable

PORTAGE_NICENESS="3"

SLOT’ed Packages and Automatic Cleaning

In several situations you want multiple different versions of a package (including libraries)
to be available on your system. Portage supports this by defining the SLOT variable in the
ebuilds. As a user, you don’t have to know how SLOT’ing works, but it is important you
know it is supported.

If you are installing a newer version of a package, Portage will check if the SLOT variable
is declared for that package. If that is the case, and the SLOT variable is different for both
packages (new and old), Portage will not touch the older package.

However, if the SLOT variable is the same (as is usually the case), the older package will
be removed by default. In order for the user to interrupt this removal, Portage will count
down a certain amount of seconds. This amount is defined in the CLEAN_DELAY variable
and defaults to 5 seconds:

Code listing 26: The CLEAN_DELAY variable

CLEAN_DELAY="5"

If you don’t want Portage to automatically remove the older versions (called "cleaning")
you can set the AUTOCLEAN variable to no:

Code listing 27: The AUTOCLEAN variable

AUTOCLEAN="no"

Build Related Variables

We have already encountered quite a lot of variables, but we are not done yet. People
who have installed Gentoo will know about the CHOST, CFLAGS and CXXFLAGS variables,
used by the compiler to compile and optimize the packages.

More information about these variables can be found in the gcc info pages, or online in
the GCC Online Manuals.

Code listing 28: Getting information on CHOST, CFLAGS and CXXFLAGS

info gcc
(Select "Invoking gcc")
(Select "Optimize options")

If the DEBUGBUILD is defined, Portage will not strip the binaries and libraries to make
debugging more easy. This slows down your system and increases the filesizes.

Code listing 29: The DEBUGBUILD variable

Do not set this to "false"; instead remove the line. Portage does not
check the value, it just checks if the variable is defined.
DEBUGBUILD="true"

The MAKEOPTS variable is used by make, a tool used to ease the compilation of a
package. It is usually defined to tell make to run several compilations simultaneously
(especially if you have a multi-CPU system, or are using distcc as described
previously).

123

To have make run three compilations simultaneously, set the MAKEOPTS variable to -j3:

Code listing 30: The MAKEOPTS variable

MAKEOPTS="-j3"

The ROOT variable shouldn’t be set in /etc/make.conf, but rather as environment
variable. Portage will check this variable to see where a package needs to be installed.
Of course, this defaults to /. As an example we show you how to install gnumeric in
/mnt/gentoo instead of in your running system:

Code listing 31: The ROOT variable

ROOT="/mnt/gentoo" emerge gnumeric

Output Formatting

By default, Portage colors its output to improve readability. If you do not want this, set the
NOCOLOR variable to true:

Code listing 32: The NOCOLOR variable

NOCOLOR="true"

4.e. Resources

Man Pages

If you need a quick reference on all listed variables, please consult the make.conf man
page:

Code listing 33: Consulting the make.conf man page

man make.conf

Commented Examples

The /etc/make.conf file contains lots of comments, including examples you might find
interesting. However, most people don’t update their /etc/make.conf interactively and
therefore miss updates to the files. You can find the latest /etc/make.conf file in our
Online ViewCVS Repository.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

124

125

5. Initscripts
Content:

Runlevels
Working with rc-update
Configuring Services
Writing Init Scripts

5.a. Runlevels

Booting your System

When you boot your system, you will notice lots of text floating by. If you pay close
attention, you will notice this text is the same every time you reboot your system. The
sequence of all these actions is called the boot sequence and is (more or less) statically
defined.

First, your boot loader will load the kernel image you have defined in the boot loader
configuration into memory after which it tells the CPU to run the kernel. When the kernel
is loaded and run, it initializes all kernel-specific structures and tasks and starts the init
process.

This process then makes sure that all filesystems (defined in /etc/fstab) are mounted
and ready to be used. Then it executes several scripts located in /etc/init.d, which will
start the services you need in order to have a successfully booted system.

Finally, when all scripts are executed, init activates the terminals (in most cases just the
virtual consoles which are hidden beneith Alt-F1, Alt-F2, etc.) attaching a special
process called agetty to it. This process will then make sure you are able to log on
through these terminals by running login.

Init Scripts

Now init doesn’t just execute the scripts in /etc/init.d randomly. Even more, it
doesn’t run all scripts in /etc/init.d, only the scripts it is told to execute. It decides
which scripts to execute by looking into /etc/runlevels.

First, init runs all scripts from /etc/init.d that have symbolic links inside
/etc/runlevels/boot. Usually, it will start the scripts in alphabetical order, but some
scripts have dependency information in them, telling the system that another script must
be run before they can be started.

When all /etc/runlevels/boot referenced scripts are executed, init continues with
running the scripts that have a symbolic link to them in /etc/runlevels/default. Again,
it will use the alphabetical order to decide what script to run first, unless a script has
dependency information in it, in which case the order is changed to provide a valid
start-up sequence.

How Init Works

Of course init doesn’t decide all that by itself. It needs a configuration file that specifies
what actions need to be taken. This configuration file is /etc/inittab.

If you remember the boot sequence we have just explained to you, you will remember
that init’s first action is to mount all filesystems. This is defined in the following line from
/etc/inittab:

Code listing 1: The system initialisation line in /etc/inittab

si::sysinit:/sbin/rc sysinit

This line tells init that it must run /sbin/rc sysinit to initialize the system. The

126

/sbin/rc script takes care of the initialisation, so you might say that init doesn’t do
much -- it delegates the task of initialising the system to another process.

Second, init executed all scripts that had symbolic links in /etc/runlevels/boot. This
is defined in the following line:

Code listing 2: The system initialisation, continued

rc::bootwait:/sbin/rc boot

Again the rc script performs the necessary tasks. Note that the option given to rc (boot)
is the same as the subdirectory of /etc/runlevels that is used.

Now init checks its configuration file to see what runlevel it should run. To decide this, it
reads the following line from /etc/inittab:

Code listing 3: The initdefault line

id:3:initdefault:

In this case (which the majority of Gentoo users will use), the runlevel id is 3. Using this
information, init checks what it must run to start runlevel 3:

Code listing 4: The runlevel definitions

l0:0:wait:/sbin/rc shutdown
l1:S1:wait:/sbin/rc single
l2:2:wait:/sbin/rc nonetwork
l3:3:wait:/sbin/rc default
l4:4:wait:/sbin/rc default
l5:5:wait:/sbin/rc default
l6:6:wait:/sbin/rc reboot

The line that defines level 3, again, uses the rc script to start the services (now with
argument default). Again note that the argument of rc is the same as the subdirectory
from /etc/runlevels.

When rc has finished, init decides what virtual consoles it should activate and what
commands need to be run at each console:

Code listing 5: The virtual consoles definition

c1:12345:respawn:/sbin/agetty 38400 tty1 linux
c2:12345:respawn:/sbin/agetty 38400 tty2 linux
c3:12345:respawn:/sbin/agetty 38400 tty3 linux
c4:12345:respawn:/sbin/agetty 38400 tty4 linux
c5:12345:respawn:/sbin/agetty 38400 tty5 linux
c6:12345:respawn:/sbin/agetty 38400 tty6 linux

What is a runlevel?

You have seen that init uses a numbering scheme to decide what runlevel it should
activate. A runlevel is a state in which your system is running and contains a collection of
scripts (runlevel scripts or initscripts) that must be executed when you enter or leave a
runlevel.

In Gentoo, there are seven runlevels defined: three internal runlevels, and four
user-defined runlevels. The internal runlevels are called sysinit, shutdown and reboot and
do exactly what their names imply: initialize the system, powering off the system and
rebooting the system.

The user-defined runlevels are those with an accompanying /etc/runlevels
subdirectory: boot, default, nonetwork and single. The boot runlevel starts all
system-necessary services which all other runlevels use. The remaining three runlevels
differ in what services they start: default is used for day-to-day operations, nonetwork
is used in case no network connectivity is required, and single is used when you need

127

to fix the system.

Working with the Init Scripts

The scripts that the rc process starts are called init scripts. Each script in /etc/init.d
can be executed with the arguments start, stop, restart, pause, zap, status, ineed, iuse,
needsme, usesme or broken.

To start, stop or restart a service (and all depending services), start, stop and restart
should be used:

Code listing 6: Starting Postfix

/etc/init.d/postfix start

Note: Only the services that need the given service are stopped or restarted. The other depending services
(those that use the service but don’t need it) are left untouched.

If you want to stop a service, but not the services that depend on it, you can use the
pause argument:

Code listing 7: Stopping Postfix but keep the depending services running

/etc/init.d/postfix pause

If you want to see what status a service has (started, stopped, paused, ...) you can use
the status argument:

Code listing 8: Status information for postfix

/etc/init.d/postfix status

If the status information tells you that the service is running, but you know that it is not,
then you can reset the status information to "stopped" with the zap argument:

Code listing 9: Resetting status information for postfix

/etc/init.d/postfix zap

To also ask what dependencies the service has, you can use iuse or ineed. With ineed
you can see the services that are really necessary for the correct functioning of the
service. iuse on the other hand shows the services that can be used by the service, but
are not necessary for the correct functioning.

Code listing 10: Requesting a list of all necessary services on which Postfix depends

/etc/init.d/postfix ineed

Similarly, you can ask what services require the service (needsme) or can use it (usesme):

Code listing 11: Requesting a list of all services that require Postfix

/etc/init.d/postfix needsme

Finally, you can ask what dependencies the service requires but that are missing:

Code listing 12: Requesting a list of missing dependencies for Postfix

/etc/init.d/postfix broken

5.b. Working with rc-update

128

What is rc-update?

Gentoo’s init system uses a dependency-tree to decide what service needs to be started
first. As this is a tedious task that we wouldn’t want our users to do manually, we have
created tools that ease the administration of the runlevels and init scripts.

With rc-update you can add and remove init scripts to a runlevel. The rc-update tool
will then automatically ask the depscan.sh script to rebuild the dependency tree.

Adding and Removing Services

You have already added init scripts to the "default" runlevel during the installation of
Gentoo. At that time you might not have had a clue what the "default" is for, but now you
should. The rc-update script requires a second argument that defines the action: add,
del or show.

To add or remove an init script, just give rc-update the add or del argument, followed by
the init script and the runlevel. For instance:

Code listing 13: Removing Postfix from the default runlevel

rc-update del postfix default

The rc-update show command will show all the available init scripts and list at which
runlevels they will execute:

Code listing 14: Receiving init script information

rc-update show

5.c. Configuring Services

Why the Need for Extra Configuration?

Init scripts can be quite complex. It is therefore not really interesting to have the users
directly edit the init script, as it would make it more error-prone. It is however important to
be able to configure such a service. For instance, you might want to give more options to
the service itself.

A second reason to have this configuration outside the init script is to be able to update
the init scripts without being afraid that your configuration changes are undone.

The /etc/conf.d Directory

Gentoo provides an easy way to configure such a service: every init script that can be
configured has a file in /etc/conf.d. For instance, the apache2 initscript (called
/etc/init.d/apache2) has a configuration file called /etc/conf.d/apache2, which can
contain the options you want to give to the Apache 2 server when it is started:

Code listing 15: Variable defined in /etc/conf.d/apache2

APACHE2_OPTS="-D PHP4"

Such a configuration file contains variables and variables alone (just like
/etc/make.conf), making it very easy to configure services. It also allows us to provide
more information about the variables (as comments).

5.d. Writing Init Scripts

Do I Have To?

No. Writing an init script is usually not necessary as Gentoo provides ready-to-use init
scripts for all provided services. However, you might have installed a service without

129

using Portage, in which case you will most likely have to create an init script.

Do not use the init script provided by the service if it isn’t explicitly written for Gentoo:
Gentoo’s init scripts are not compatible with the init scripts used by other distributions!

Layout

The basic layout of an init script is shown below.

Code listing 16: Basic layout of an init script

#!/sbin/runscript

depend() {
 (Dependency information)
}

start() {
 (Commands necessary to start the service)
}

stop() {
 (Commands necessary to stop the service)
}

restart() {
 (Commands necessary to restart the service)
}

Any init script requires the start() function to be defined. All other sections are optional.

Dependencies

There are two dependencies you can define: use and need. As we have mentioned
before, the need dependency is more strict than the use dependency. Following this
dependency type you enter the service you depend on, or the virtual dependency.

A virtual dependency is a dependency that a service provides, but that is not provided
solely by that service. Your init script can depend on a system logger, but there are many
system loggers available (metalogd, syslog-ng, sysklogd, ...). As you cannot need every
single one of them (no sensible system has all these system loggers installed and
running) we made sure that all these services provide a virtual dependency.

Let us take a look at the dependency information for the postfix service.

Code listing 17: Dependency information for Postfix

depend() {
 need net
 use logger dns
 provide mta
}

As you can see, the postfix service:

requires the (virtual) net dependency (which is provided by, for instance,
/etc/init.d/net.eth0)
uses the (virtual) logger dependency (which is provided by, for instance,
/etc/init.d/syslog-ng)
uses the (virtual) dns dependency (which is provided by, for instance,
/etc/init.d/named)
provides the (virtual) mta dependency (which is common for all mail servers)

Controlling the Order

In some cases you might not require a service, but want your service to be started
before (or after) another service if it is available on the system (note the conditional -
this is no dependency anymore) and ran in the same runlevel (note the conditional - only
services in the same runlevel are involved). You can provide this information using the
before or after settings.

130

As an example we view the settings of the Portmap service:

Code listing 18: The depend() function in the Portmap service

depend() {
 need net
 before inetd
 before xinetd
}

You can also use the "*" glob to catch all services in the same runlevel, although this isn’t
adviseable.

Code listing 19: Running an init script as first script in the runlevel

depend() {
 before *
}

Standard Functions

Next to the depend() functionality, you also need to define the start() function. This
one contains all the commands necessary to initialize your service. It is adviseable to use
the ebegin and eend functions to inform the user about what is happening:

Code listing 20: Example start() function

start() {
 ebegin "Starting my_service"
 start-stop-daemon --start --quiet --exec /path/to/my_service
 eend $?
}

If you need more examples of the start() function, please read the source code of the
available init scripts in your /etc/init.d directory. As for start-stop-daemon, there is
an excellent man page available if you need more information:

Code listing 21: Getting the man page for start-stop-daemon

man start-stop-daemon

Other functions you can define are: stop() and restart(). You are not obliged to define
these functions! Our init system is intelligent enough to fill these functions by itself if you
use start-stop-daemon.

Adding Custom Options

If you want your init script to support more options than the ones we have already
encountered, you should add the option to the opts variable, and create a function with
the same name as the option. For instance, to support an option called restartdelay:

Code listing 22: Supporting the restartdelay option

opts="${opts} restartdelay"

restartdelay() {
 stop()
 sleep 3 # Wait 3 seconds before starting again
 start()
}

Service Configuration Variables

You don’t have to do anything to support a configuration file in /etc/conf.d: if your init
script is executed, the following files are automatically sourced (i.e. the variables are
available to use):

131

/etc/conf.d/<your init script>
/etc/conf.d/basic
/etc/rc.conf

Also, if your init script provides a virtual dependency (such as net), the file associated
with that dependency (such as /etc/conf.d/net) will be sourced too.

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

132

133

6. Environment Variables
Content:

Environment Variables?
Defining Variables Globally
Defining Variables Locally

6.a. Environment Variables?

What they are

An environment variable is a named object that contains information used by one or more
applications. Many users (and especially those new to Linux) find this a bit weird or
unmanageable. This is however wrong: by using environment variables one can easily
change a configuration setting for one or more applications.

Important Examples

The following table lists a number of variables used by a Linux system and describes
their use. Example values are presented after the table.

Variable Description

PATH

This variable contains a colon-separated list of directories in which your system
looks for executable files. If you enter a name of an executable (such as ls,
rc-update or emerge) but this executable is not located in a listed directory, your
system will not execute it (unless you enter the full path as command, such as
/bin/ls).

ROOTPATH This variable has the same function as PATH, but this one only lists the directories
that should be checked when the root-user enters a command.

LDPATH This variable contains a colon-separated list of directories in which the dynamical
linker searches through to find a library.

MANPATH This variable contains a colon-separated list of directories in which the man
command searches for the man pages.

INFODIR This variable contains a colon-separated list of directories in which the info
command searches for the info pages.

PAGER This variable contains the path to the program used to list the contents of files
through (such as less or more).

EDITOR This variable contains the path to the program used to change the contents of files
with (such as nano or vi).

KDEDIRS This variable contains a colon-separated list of directories which contain
KDE-specific material.

CLASSPATH This variable contains a colon-separated list of directories which contain Java
classes.

CONFIG_PROTECT This variable contains a space-delimited list of directories which should be
protected by Portage during updates.

CONFIG_PROTECT_MASK This variable contains a space-delimited list of directories which should not be
protected by Portage during updates.

Below you will find an example definition of all these variables:

Code listing 1: Example definitions

PATH="/bin:/usr/bin:/usr/local/bin:/opt/bin:/usr/games/bin"
ROOTPATH="/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin"
LDPATH="/lib:/usr/lib:/usr/local/lib:/usr/lib/gcc-lib/i686-pc-linux-gnu/3.2.3"
MANPATH="/usr/share/man:/usr/local/share/man"
INFODIR="/usr/share/info:/usr/local/share/info"
PAGER="/usr/bin/less"
EDITOR="/usr/bin/vim"
KDEDIRS="/usr"
CLASSPATH="/opt/blackdown-jre-1.4.1/lib/rt.jar:."
CONFIG_PROTECT="/usr/X11R6/lib/X11/xkb /opt/tomcat/conf \
 /usr/kde/3.1/share/config /usr/share/texmf/tex/generic/config/ \
 /usr/share/texmf/tex/platex/config/ /usr/share/config"
CONFIG_PROTECT_MASK="/etc/gconf

6.b. Defining Variables Globally

134

The /etc/env.d Directory

To centralise the definitions of these variables, Gentoo introduced the /etc/env.d
directory. Inside this directory you will find a number of files, such as 00basic, 05gcc,
etc. which contain the variables needed by the application mentioned in their name.

For instance, when you installed gcc, a file called 05gcc was created by the ebuild which
contains the definitions of the following variables:

Code listing 2: /etc/conf.d/05gcc

PATH="/usr/i686-pc-linux-gnu/gcc-bin/3.2"
ROOTPATH="/usr/i686-pc-linux-gnu/gcc-bin/3.2"
MANPATH="/usr/share/gcc-data/i686-pc-linux-gnu/3.2/man"
INFOPATH="/usr/share/gcc-data/i686-pc-linux-gnu/3.2/info"
CC="gcc"
CXX="g++"
LDPATH="/usr/lib/gcc-lib/i686-pc-linux-gnu/3.2.3"

Other distributions tell you to change or add such environment variable definitions in
/etc/profile or other locations. Gentoo on the other hand makes it easy for you (and
for Portage) to maintain and manage the environment variables without having to pay
attention to the numerous files that can contain environment variables.

For instance, when gcc is updated, the /etc/env.d/05gcc file is updated too without
requesting any user-interaction.

This doesn’t only benefit Portage, but also you, as user. Occasionally you might be asked
to set a certain environment variable system-wide. As an example we take the
http_proxy variable. Instead of messing with /etc/profile, you can now just create a
file (/etc/env.d/99local) and enter your definition(s) in it:

Code listing 3: /etc/env.d/99local

http_proxy="proxy.server.com:8080"

By using the same file for all your variables, you have a quick overview on the variables
you have defined yourself.

The env-update Script

Several files in /etc/env.d define the PATH variable. This is not wrong: when you run
env-update, it will append the several definitions before it updates the environment
variables, thereby making it easy for packages (or users) to add their own environment
variable settings without interfering with the already existing values.

The env-update script will append the values in the alphabetical order of the
/etc/env.d files. This is why many of the files in /etc/env.d begin with a number.

Code listing 4: Update order used by env-update

 00basic 99kde-env 99local
 +-------------+----------------+-------------+
PATH="/bin:/usr/bin:/usr/kde/3.2/bin:/usr/local/bin"

When you run env-update, the script will create all environment variables and place
them in /etc/profile.env (which is used by /etc/profile). It will also extract the
information from the LDPATH variable and use that to create /etc/ld.so.conf. After this,
it will run ldconfig to recreate the /etc/ld.so.cache file used by the dynamical linker.

If you want to notice the effect of env-update immediately after you run it, execute the
following command to update your environment. Users who have installed Gentoo
themselves will probably remember this from the installation instructions:

135

Code listing 5: Updating the environment

env-update && source /etc/profile

6.c. Defining Variables Locally

User Specific

You do not always want to define an environment variable globally. For instance, you
might want to add /home/my_user/bin to the PATH variable but don’t want all other users
on your system to have that in their PATH too. If you want to define an environment
variable locally, you should use ~/.bashrc or ~/.bash_profile:

Code listing 6: Extending PATH for local usage in ~/.bashrc

PATH="${PATH}:/home/my_user/bin"

When you relogin, your PATH variable will be updated.

Session Specific

Sometimes even stricter definitions are requested. You might want to be able to use
binaries from a temporary directory you created without using the path to the binaries
themselves or editing ~/.bashrc for those few moments you need it.

In this case, you can just define the PATH variable in your current session by using the
export command. As long as you don’t log out, the PATH variable will be using the
temporary settings.

Code listing 7: Defining a session-specific environment variable

export PATH="${PATH}:/home/my_user/tmp/usr/bin"

 The contents of this document are licensed under the Creative Commons - Attribution / Share Alike license.

136

